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ABSTRACT We have studied and found coupled cluster wave functions as important functions 
for a projection quantum Monte Carlo algorithm within the configuration interaction 

scheme. The ground state wave function of a configuration interaction Hamiltonian 
is filtered out by propagating the amplitudes of an initial arbitrary wave function via 

a random walk in the many body Hilbert space spanned by a basis of Slater 
determinants. The coupled cluster wave functions are used to guide this random 

walk via importance sampling in order to circumvent the sign problem. This 

approach has provided upper bounds to the ground state energy whose tightness 
can be systematically improved by including higher order excitations in the coupled 

cluster wave function. We have applied three dimensional homogenous electron gas 
in momentum space. The electron gas was studied for large single particle basis 

sizes. We found that coupled cluster wave functions are very accurate and good 
approximation for ground state wave function for many physical systems. The 

obtained results were in good agreement with previously obtained results. 
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INTRODUCTION     
 
The spectacular success of the fixed node Quantum Monte Carlo is largely of the development of high 
quality importance functions. Most of these importance functions have forms that are convenient for 
calculations in co-ordinate space only. The lack of accurate and computationally efficient importance 

functions has precluded a wide exploration of the fixed node Quantum Monte Carlo method within 
the configuration interaction Scheme1. Recently it was sparked by the demonstration that even within 
the configuration interaction scheme it is possible to apply stochastic projection to systems much 
larger than that would be possible using conventional matrix diagonalization2-4. The development of 

an efficient ground state Quantum Monte Carlo algorithm within the configuration interaction or 

momentum space would be of great interest for physics. The most of the modern interactions are 
written in nonlocal forms5 and in electronic structure calculations with non local pseudopotentials6. 
Quantum Monte Carlo methods have become presently standard tools for accurate computations of 
ground state properties in a wide variety of strongly correlated systems7 ranging from quantum 

chemistry8-9 to condensed matter10-11 and nuclear physics12. In fermionic systems Quantum Monte 
Carlo methods are plagued by the sign problem. The sign problem is circumvented in the fixed node 
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approximation with the help of importance sampling with a trial ground state wave function or 

importance function13. The obtained results were compared with previously obtained results.   
 
METHOD 
 
We have considered a general second quantized fermionic configuration interaction Hamiltonian 
which included only two body interactions. 
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ia  creates a particle in the single particle state labeled i. The set S of single particle state is 

assumed to be finite and size Ns. The ab
ijV  are general two body interaction matrix elements. For 

homogeneous systems we have assumed the plane wave state which defines momentum and space as 

the single particle basis set. The single particle energies are 2
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 where ki is the momentum of the i-

state and m is the fermion mass. We have included single particle i with 2 2
maxik k . The cutoff 

independent results have been obtained by performing successive calculations with increasing kmax 

and then extrapolating to 
maxk  . In three dimensional electron gas the interaction matrix elements 

are  
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. The volume of the simulation box was determined by the 

density and the number of particles N in the simulation. The ground state wave function of , gsH   

was projected out with the power method, 
0lim M

gs M P   , where the propagator  

 1 TP H E   or a more efficient variation. The   is a small number in inverse energy units and 

TE  is and energy shift used to fix the norm of the wave function. In quantum Monte Carlo, the 

power method is applied stochastically. For a generic configuration interaction Hamiltonian the 

matrix elements of the propagator P  are not non negative. This leaded a sign problem in quantum 
Monte Carlo. 

 
RESULTS AND DISCUSSION     
 
Graph (1) shows the configuration interaction Monte Carlo ground state energy estimated for 14N   

and 0.5,1.0,2.0and3.02sr   for some large basis size calculations. Previously it was suggested for the 

three dimensional electron gas that is might be possible to extrapolate to the 
sN   by exploiting a 

linear 1

sN

 dependence of the correlation energy for large but finite Ns. For  rs=0.5 and N = 14 such a 

linear trend in the correlation energy is visible  for other values of rs shown in the graph, no such 

trend is evident.  The situation is similar for calculations with N = 32 and 54. We found that at least 

upto largest basis size 2378sN  . The ground state energy of different sr  and N  for the largest 
sN  

was calculated. The energies were calculated in finite configuration interaction like basis set using the 
initiator full configuration interaction quantum Monte Carlo method. The 

sN   results were 

obtained by using the so called single point extrapolation from much smaller values of 
sN  than our 

obtained values. The finite basis set results were found in good agreement with previous results. 
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Graph: 1 Correlation energies for N=14 and rs =0.5, 1.0, 2.0, and 3.0 as a function of the single 
particle basis size from CIMC with the CCD (1) importance function. 
 
CONCLUSION 
 
We have found that three dimensional electron gas described by a simple Hamiltonian nevertheless 
encapsulated many of the difficulties associated with modern many body theories. It has both the 

weakly and strongly correlated regimes which can be accessed via single tunable density parameter, 
the Wigner-Seitz radius rs provided an ideal system for bench making many body theories. We also 

found that coupled cluster wave functions introduced as importance functions in a Monte Carlo 
method designed for the configuration interaction framework to provide upper bounds to the ground 
state energy. The obtained results were found in good agreement with previously obtained theoretical 

and experimental works.. 
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