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Abstract 
 
The motion of a homogenous, rotating, incompressible, second grade 

fluid with finite electrical conductivity through porous media in the 
presence of transverse magnetic field has been considered. For steady 

plane transverse flow the equations of motion have been recast in 
hodograph plane. Further the flow equations have been obtained in 

terms of Legendre transform function of the stream function. Lastly 
some examples have been taken to illustrate the developed theory and 
their streamlines are also plotted. 
 

Keywords: MHD; exact solution; rotating frame; hodograph 
transformation; legendre transform function 
 

 

 

1. Introduction 
 
There are many phenomenon both naturally occurring as well as closer to our daily life like 

atmospheric or oceanic circulations, hurricanes and tornados, bath tub vorticities, stirring tea in a cup 
etc. that occur due to the rotating fluids. As such the theory of rotating fluids has become very 
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important and many studies [1-15] have been made on the rotating fluid and several investigations 

have been carried out on various types of flows both non-MHD and MHD in a rotating system. 
 

Also the study of non-Newtonian fluids is gaining importance day by day as many technological and 
industrial applications are based on them. In study of non-Newtonian fluids it is mostly found that 

the governing equations are second and third order non-linear differential equations and are very 
difficult to solve. As such many techniques have been used by researchers to transform the equations 

in solvable form and get the exact solutions. One such transformation technique is the hodograph 
transformation. Ames [16] has given an excellent survey of this method, which has been successfully 
used by many researchers [17-39]. 

 
 In this paper we have studied steady plane rotating incompressible flow of an electrically conducting 

second grade fluid in the presence of transverse magnetic field through porous media and have 
applied the hodograph transformation for solving the system of non-linear partial differential 

equations governing the flow. Further we have determined exact solutions for special type of flows as 
illustration. 

 
2. Basic Equations  
 

The basic equations governing the motion of a rotating homogenous, electrically conducting, 
incompressible, second-grade fluid in the presence of magnetic field through porous media are 

   V 0 ,     (1)                                                      

   2 div (curl )
k


             V V V r T H H V    , (2)

21
curl( ) ,

t


   

 

H
V H H                                                              (3)                                                        

 H=0,                                                                                                (4)                                                     

                           

 and the constitutive equation for the Cauchy stress T,          

            
2

1 1 2 2 1p ,    T I A A A              

where V = velocity field vector, H = magnetic vector field , p  dynamic pressure function,    the 

constant fluid field density,  angular velocity vector, r  radius vector    coefficient of 

dynamic viscosity,   constant magnetic permeability, k   permeability of the medium,  the 

electrical conductivity and 1 2,   are the normal stress moduli. –pI denotes the deterninate spherical 

stress, I = isotropic tensor, so that p I becomes 

p 0 0

p 0 p 0

0 0 p

 
 

  
 
 

I = - . 

The Rivlin-Ericksen tensors A1 and A2 are defined as 

T
1 ( )   A V V , 

T
12 1 1( ) ( )



    A A V A A V , 

where a dot over A1 denotes the material time derivative. 

Equations (1) to (3) form a system of three equations in three unknowns V, H, p. Equation (4) is an 
additional condition on H expressing the absence of magnetic poles in the flow. 

Let us define the two-dimensional vorticity function  x, y  and a generalized energy function h(x, 

y) as: 

v u
(x, y) ,

x y

 
  

 
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2
2 22 2 2

1 1 2 1

1 1 1 H
h(x, y) V p (u u v v) (3 2 ) ,

2 2 4 2
              r A             (5)                   

where 2 2 2V u v   , p  is the reduced pressure given by 
21

p p
2

    r  and the last term being 

the centrifugal contribution of pressure, u, v are the components of velocity vector.  

   
2 is the Laplacian and  

2 22
2

1

u v u v
4 4 2 .

x y y x

       
       

        
A  

Here we have considered steady plane transverse flow. A steady plane flow in the (x, y) plane is said 
to be a transverse flow if the magnetic field vector is perpendicular to (x, y) plane which contains the 
fluid flow vector field and all the flow variables are functions of x and y. Thus, we take V=(u(x, y), 

v(x, y), 0), H=(0, 0, H(x, y))  and / z  =0. 
 
Introducing , h and the definition of V and H into the above system of equations we obtain the 

following system of equations: 

u v
0,

x y

 
 

 
                                                                  (continuity) 

2
1

h
v v u 2 v ,

x y k

  
        

 
                   (linear momentum)                                                                     

           

2
1

h
u u v 2 u ,

y x k

  
         

 
                                                                      (6)                                                                           

           

2 2

H 2 2

H H H H
u v 0,

x y x y

    
    

    
                                         (diffusion) 

           

v u
,

x y

 
 

 
                                                                                   (vorticity) 

where  .The above system of five partial differential equations in five unknown functions 

u, v, , H and h as functions of (x, y) govern steady plane transverse flows of an incompressible 

second-grade fluid of finite electrical conductivity through porous media. Once a solution of these 
equations are found, the pressure function is determined from the expression for h(x, y)  given in (5).  
 
3. Equations in hodograph plane 
 
Letting the function  u= u(x, y) and v= v(x, y) to be such that, in the region of flow, the Jacobian 

                                                                                       (7) 
 

we may consider x and y as functions of u and v. By means of x = x(u, v) ,y =y(u, v), we derive the 

following relations: 
 

1
H ( )  



 
 
u, v

J(x, y) 0, 0 J ,
x, y


   

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                                                                                                         (8) 

We also obtain the relations 

             

g (g, y) (g, y)
j ,

x (x, y) (u, v)

g (g, x) (x,g)
j .

y (x, y) (u, v)

  
 

  

  
  

  
                                                                                   (9)                     

Where         g g x,  y g x u,  v ,  y u,  v g u,  v    is any continuously differentiable function 

and  
1

(u, v) (x, y)
J J(x, y) j(u, v)

(x, y) (u, v)


  

      
.                                                                             (10) 

 

Employing these transformation relations for the first order partial derivatives and the transformation 

equations for the functions , , ,H h defined by 

            

        

        

        

x, y x u, v , y u, v u, v ,

H x, y H x u, v , y u, v u, v ,

h x, y h x u, v , y u, v u, v ,

   

 

 

H

h



 

  

the system of equations (6) is replaced by the following system in the hodograph plane (u, v) :  
 

x y
0

u v

 
 

 
,                                                                                                                                                     (11)                                 

 

1 2
1 1

(x, jw ) ( jw , y)( , y)
j v jw vj u 2 v

(u, v) (u, v) (u, v) k

   
           

h
 ,                                             (12)   

           1 2
2 1

(x, jw ) ( jw , y)(x, )
j u jw uj v 2 u ,

(u, v) (u, v) (u, v) k

   
            

h
                          (13)                                                     

             

            1 2
1 2 H

( jG , y) (x, jG )
uG vG 0

(u, v) (u, v)

  
      

,                                                                            (14) 

 

x y
j ,

v u

  
  

  
                                                                                                                              (15)   

 
where  

            

1 1 2 2

( , y) (x, )
G G (u, v) , G G (u, v) ,

(u, v) (u, v)

 
   

 

H H

       

u y u x
J , J ,

x v y v

v y v x
J , J .

x u y u

   
  

   

   
  

   
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1 1 2 2

(x, ) ( , y)
w w (u, v) , w w (u, v) .

(u, v) (u, v)

 
   

 

 
                                                                           (16) 

 
System of equations (11) to (15) is a system of five equations for the five unknown functions x(u, v), 

y(u, v),  (u, v), H(u, v) and h (u, v). 

 
 The equation of continuity implies the existence of a stream-function  (x, y) such that 

 

                                                                        

d vdx udy or v , u .
x y

 
      

 
                                                                             (17) 

            

Likewise equation (11) implies the existence of a function L(u, v) , called the Legendre transform 

function of the stream-function (x, y) , so that  

L L
dL ydu xdv or y , x ,

u v

 
     

 
                                                                                   (18) 

and the two functions  (x, y) ,  L(u, v) are related by  

L(u, v) vx uy (x, y).                                                                                                             (19) 

 
Introducing L(u, v) in the system (11)-(15), with j, w1, w2, G1, G2, given by (10), (16) respectively, it 

follows that (11) is identically satisfied and the system may be replaced by  
 

1 2

1 1

L L L
, , jw , jw

u v u
j v jw vj u 2 v ,

(u, v) (u, v) (u, v) k

        
                        
   

  

h

                             (20)                             

1 2

2 1

L L L
, , jw , jw

v v u
j u jw uj v 2 u ,

(u, v) (u, v) (u, v) k

        
                        
   

  

h

                         (21) 

1 2

1 2 H

L L
, jG , jG

u v
uG vG 0 ,

(u, v) (u, v)

     
              
  

  

      

                                                                                                                                  (22) 

 
2 2

2 2

L L
j ,

v u

  
  

  
                                                                                                                                (23)                                                                                               

where   

122 2 2

2 2

L L L
j ,

v u u v


    
   
      

    

1 2

L L
, ,

v u
w , w ,

(u, v) (u, v)

    
         
 

 

      


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1 2

L L
, ,

u v
G , G .

(u, v) (u, v)

    
         
 

H H

                                                                                       (24)                                                           

By using the integrability condition                                                                                                                                                                          

2 2 2 2

2 2

L L
, ,

L L L Lu v
j j j j j j ,

u v v v u (u, v) u v u v u (u, v)

       
                             

                 
   
   

h h

 

i.e    
2 2h / x y h / y x        in the (x,y) plane, we eliminate h(u, v) from (20) and (21) and obtain 

1 2( L / v, jw ) ( L / u, jw )

(u, v) (u, v)

      
    

 

       1 2
1

( L / v, j{ / (u, v)( L / v, jw ) / (u, v)( L / u, jw )})
v

(u, v)

            
  

 

1 2( L / u, j{ / (u, v)( L / v, jw ) / (u, v)( L / u, jw )})
u

(u, v)

           
  

 

( L / v,u) ( L / u, v) ( L / v,v) ( L / u,u)
2

k (u, v) (u, v) (u, v) (u, v)

               
             

 

2 1(uw vw ) 0,                                                                                   (25) 

 
where  j, w1, w2  are given in (24) . Summing up we have the following theorem: 
 

Theorem I: If L(u, v) is the Legendre transform function of a stream-function of steady, plane, 
transverse, rotating, incompressible, finitely conducting second-grade fluid flows through porous 

media and H(u, v) is the transformed magnetic vector component function then L(u, v) and H(u, v) 
must satisfy equations (25) and (22) where   (u, v), j(u, v), w1(u, v), w2 (u, v), G1(u, v), G2(u, v) are 

given by (23) and (24). 
 

If the fluid has infinite electrical conductivity, then the transformed diffusion equation becomes 

1 2uG vG 0,                                                                                                                          (26)  

where 1G , 2G are given in (24). Then, we have the following theorem: 

 
Theorem II: If L(u, v) is the Legendre transform function of a stream-function of steady, plane, 

transverse, rotating, incompressible, infinitely conducting second-grade fluid flows through porous 

media and H(u, v) is the transformed magnetic vector component function then L(u, v) and H(u, v) 
must satisfy equations (25) and (26) where   (u, v), j(u, v), w1(u, v), w2 (u, v), G1(u, v), G2(u, v) are 

given by (23) and (24). 

 

We now develop the flow equations in polar co-ordinates (q, ) in the hodograph plane. We have  

u q cos , v q sin     ,                                                                                                             (27) 

sin
cos ,

u q q

cos
sin ,

v q q

   
  

  

   
  

  
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(F,G) (F ,G ) (q, ) 1 (F ,G )
.

(u, v) (q, ) (u, v) q (q, )

       
 

     
                                                                           (28) 

Where F(u,v) F (q, ), G(u,v) G (q, )     are continuously differentiable functions. 

                        

 Denoting L (q, ),  1 2 1 2(q, ), j (q, ), w (q, ), w (q, ), G (q, ), G (q, )             to be respectively 

transformed functions of L (u,v), 1 2 1 2(u,v), j(u,v),w (u,v),w (u,v),G (u,v),G (u,v) in (q, ) 

coordinates and  we can write them as follows: 

                               

122 2 2
4 2

2 2

L L L L L
j (q, ) q q q q ,

q q q


    


        
        

          
 

                                

2 2

2 2 2

L 1 L 1 L
(q, ) j ,

q q q q

  
     
     

   
 

                                1

L cos L
sin ,

q q1
w (q, ) ,

q (q, )

 




   
    

   
 

 

 

           
2

L sin L
cos ,

q q1
w (q, ) ,

q (q, )

 




   
    

   
 

 

           

1

L sin L
cos ,H

q q1
G (q, ) ,

q (q, )

 




   
   

   
 

 

            2

L cos L
sin , H

q q1
G (q, ) .

q (q, )

 




   
   

   
 

                                                                                             (29) 

Equations (25) and (22) are transformed to the (q, ) plane as 

1

L cos L L sin L
sin , j cos , j

q q q q
sin cos

(q, ) (q, )

   
   



         
           

           
    
 
 
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L cos L L sin L
sin ,q cos cos ,q sin

q q q q1

k q (q, ) (q, )

            
           

         
    
 
 

 2 1

L cos L L sin L
sin ,qsin cos ,q cos

q q q q2

q (q, ) (q, )

q cos w sin w 0, (30)

   

 

         
           

         
    
 
 

    

 
            

 
1

H
1 2

2

L sin L
cos , j G

q q
q cos G sin G

q (q, )

L cos L
sin , j G

q q
0, (31)

(q, )

 
 

 

 
 

    
    

      
  



   
    

    
 



 

where 
  is defined as 

           

1 2

L cos L L sin L
sin , j w cos , j w

q q q q1
(q, ) . (32)

q (q, ) (q, )

   
   



         
         

          
    
 
 

 

From equations (30)-(31) we can have the following corollaries: 

Corollary I: If L (q, )  and H (q, )  are the Legendre transform function of a stream function and 

the magnetic field vector function, respectively, of the equations governing the motion of steady, 

plane, rotating, transverse flows of incompressible finitely conducting second grade fluids through 

porous media, then L (q, )  and H (q, )  must satisfy equations (30) and (31) where 

1 2 1 2j , , w , w ,G ,G , ,        are given by (29) and (32). 

 

Corollary II: If L (q, )  and H (q, )  are the Legendre transform function of a stream function and 

the magnetic field vector function, respectively, of the equations governing the motion of steady, 

plane, rotating, transverse flows of incompressible infinitely conducting second grade fluids through 

porous media, then L (q, )  and H (q, )  must satisfy equations (30) and  
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         1 2cos G sin G 0 .                                                                                                                             (33)   

where 1 2 1 2j , , w , w ,G ,G , ,        are given by (29) and (32).                                                                                                  

Once a solution L (q, ),H (q, )    is known we employ 

         

L cos L
x sin ,

q q

sin L L
y cos ,

q q

 

 

  
  

 

  
  

 

                                                                                                                   (34) 

and (27) to obtain    u u x, y , v v x, y  in the physical plane. After obtaining these velocity 

components, we get  H x, y in the x, y plane from H (q, )  .The remaining flow variables are then 

determined by using the flow equations in the physical plane. 
 
4. Applications 
 
We now consider some flow problems as application of Theorems I and II and Corollaries I and II 
Application I: 
Let   L (u, v) =  Au2 +Bv2  ,                                                                                                                              (35) 
be the Legendre transform function, where A, B are arbitrary constants and A, B are non zero. Using 

(35) in equations (23) and (24) we obtain 

1 2 1 2

1 A B
j , , w w 0, G 2A , G 2B .

4AB 2AB v u

  
      

 

H H
       

                                            (36) 

Now employing (35) and (36) in equation (22), H(u, v) must satisfy 
2 2

H 2 2 2 2

u v 1 1
0.

B v A u 2B v 2A u

    
    

    

H H H H
                                                                   (37) 

Assuming H(u, v) = F(u) + G(v) to be the form of a possible solution for H(u, v), we find that (37) 
becomes 

H 2 2

u v 1 1
G (v) F (u) G (v) F (u) 0.

B A 2B 2A

        
 

   

                                                          (38)                                                 
Differentiating twice with respect to u, we get  

( )H
2

F (u)
v F (u) 0.

A 2A

 
 iv

                  

The above equation holds true for all v if 

 
( )H

2

F (u)
0 , F (u) 0.

A 2A

 
 iv

                                                                                                       (39)    

 Therefore we have  

               
21

2 3

C
F(u) u C u C ,

2
     where 1C  , 2C  , 3C ,  are arbitrary constants. 

Using F(u) so obtained in equation (38), we find that G(v) must satisfy 

1 2 H H 1
2 2

C v C CG
u v G 0.

B A A 2B 2A

            
   

 

This equation holds true for all u if  
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           1 2 H H 1
2 2

C v C CG
0, v G 0.

B A A 2B 2A

  
                                                                                 (40)       

Solving equations (40) we obtain  
2

1 4 2

v
G(v) C C ,C 0 and A B.

2
                                                                                     (41) 

Therefore we have  

2 2 2 21
5

C
L(u, v) A(u v ) , (u, v) (u v ) C ,

2
    H                                                       (42) 

where  5 3 4C C C .   

Now using L(u, v) = A(u2 – v2) in equation (25) we find that (25) is identically satisfied. 
Using L(u, v) = A(u2 – v2) in (18) and solving the resulting equations simultaneously we get 

y x
u(x, y) , v(x, y) .

2A 2A

 
                                                                                               (43) 

Employing (35) in the solution for H (u, v) we obtain 

2 21
52

C
H(x, y) (y x ) C .

8A
                                                                                                        (44) 

Using  = 0 and equations (43) in the linear momentum equations in system (6) and integrating , we 

obtain h(x, y). Employing h(x, y) and (44) in (5), the pressure function is determined to be  

      

 2 2 2 2

2

2

2 21 2 1
5 62 2

p(x, y) xy y x (x y )
kA 2A 8A

(3 2 ) C
(y x ) C C ,

2A 2 8A

  
    

     
     

 

 

                                                                                                                                                             (45)          
where C6 is a constant. And the streamlines are given by 

x2 – y2 = Constant.  
This shows that the streamlines of the flow equations are concentric hyperbolas. 

 

Figure 1: Concentric hyperbolic streamlines 
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Theorem III: If     2 2L u, v A u v   is the Legendre transform function of a stream function for 

steady, plane, rotating, incompressible, finitely conducting second-grade fluid through porous media 

in the presence of transverse magnetic field, then the flow in the physical plane is a flow with 

concentric hyperbolic streamlines with flow variables given by (43) to (45). 
 
Infinitely conducting fluid 

Using 
2 2L(u,v) A(u v )  the equations (25) is identically satisfied and taking A B  in (36), 

(26) takes the form 

 
1 1

0
v v u u

 
 

 

H H
 ,                                                                                                                         (46) 

Solving (46) for  u, vH  we get  

  
2 2v u

u, v
2

 
  
 

H  ,                                                                                                                (47) 

where   is an arbitrary function of its argument. 

Proceeding as in the case of finitely conducting we get 

 
y x

u(x, y) , v(x, y)
2A 2A

 
  ,                                                                                                  (48) 

  
2 2

2

x y
H x, y

8A

 
   
 

  ,                                                                                                            (49) 

and  

 2 2 2 2

2

22 2
1 2

72 2

p(x, y) xy y x (x y )
kA 2A 8A

(3 2 ) x y
C ,

2A 2 8A

  
    

     
    

 
        

                                   (50) 

where 7C is an arbitrary constant.  

We have the following theorem: 

Theorem IV: If     2 2L u, v A u v   is the Legendre transform function of a stream function for 

steady, plane, rotating, incompressible, infinitely conducting second-grade fluid through porous 
media in the presence of transverse magnetic field, then the flow in the physical plane is a flow with 
flow variables given by (48) to (50).       
                                
 Application II:                                                                                                                                       

Let  L u, v uv  .                                                                                                                         (51)   

Employing  L u, v   uv  in equation (25) we find that (25) is identically satisfied. Using (51) in 

equations (23) and (24) we obtain 

1 2 1 2j 1 , 0 , w w 0 , G , G
u v

 
       

 

H H
 .                                             (52)                   

Now using (51) and (52) in equation (22), H(u, v) must satisfy 
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2 2

H 2 2
u v 0

u v u v

    
      

    

H H H H
 .                                                                          (53)    

Assuming H(u, v) = F(u) G(v) to be the form of a possible solution for H(u, v), we find that (53) 
becomes        

                 HF u  G v F u  G v F u  G v F u  Gu v v 0          ,                            

dividing the whole equation by F(u) G(v) we get 

 
 

 
 

 
 

 
 H

F u G v F u G v
    

F u  G
u v

F
0

v u G v

   
     





 


                 

                                                     (54) 

Above equation holds true if 

 
 

 
 

F u G v
  

F u  v
u v 0

G
 





,

 
 

 
 H

F u G v
  

u G
0

F v

 
   










 
      

                                                                      (55) 

Solving equations (55) we get  

  1F u D u  and   2G v D v  ,  

where 1D  and 2D  are arbitrary constants. Therefore we have 

 L u, v uv  , (u, v) DuvH  ,                                                                                                   (56) 

Now proceeding as in the previous cases we obtain  

    u x, y x , v x , y y   ,                                                                                                                                                                        

 H x, y Dxy    ,                                                                                                                 

and 

         
22 2 2 2

1 2 3

1
p x, y y x 4 xy x y 2 3 2 Dxy D

2k 2 2

 
                

 (57)   

where   3D  is an arbitrary constant. And the streamlines are given by  

Con txy stan . 

This shows that the streamlines of the flow equations are rectangular hyperbolae. 

 

Figure 2: Rectangular hyperbolae streamlines 
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Theorem V: If   L u, v uv  is the Legendre transform function of a stream function for steady, 

plane, rotating, incompressible, finitely conducting second-grade fluid through porous media in the 

presence of transverse magnetic field, then the flow in the physical plane is a flow with rectangular 
hyperbolic streamlines with flow variables given by (57) . 

 
Infinitely conducting fluid 
 Here in this case, only the diffusion equation is replaced by 

 u v 0
u v

 
  

 

H H
,                                                                                                                       (58) 

Solving equation (58),  u, vH  is obtained as 

    u, v uv H  ,                                                                                                                   

where   is an arbitrary function of its argument. 

On proceeding as before we obtain 

    u x, y x , v x , y y   , 

    H x, y xy   ,           

         
22 2 2 2

1 2 4

1
p x, y y x 4 xy x y 2 3 2 D

2k 2 2
xy

 
               

           
 (59)   

where 4D  is an arbitrary constant.       

                                                                                   

Theorem VI: If   L u, v uv  is the Legendre transform function of a stream function for steady, 

plane, rotating, incompressible, infinitely conducting second-grade fluid through porous media in the 

presence of transverse magnetic field, then the flow in the physical plane is a flow with rectangular 
hyperbolic streamlines with flow variables given by (59) . 

In the absence of rotating reference frame i.e.    we recover the results of Sayantan Sil, Manoj 

Kumar and C. Thakur [30]. Also when porous media is absent i.e. the term 0
k


  our result will tally 

with and O.P Chandna and P.V Nguyen [20]. 
 
Application II:  
Let  

            L (q, ) F(q), F (q) 0, F (q) 0.                                                                                                (60) 

By using (60) in equations (29) we obtain  

 

            

1 2

1

2

q qF (q) F (q)
j , ,

F (q)F (q) F (q)F (q)

1 1
w cos F (q) , w sin F (q),

q q

1 H H
G cos F (q) sin F (q) ,

q q

1 H H
G sin F (q) cos F (q) ,

q q

x F (q)sin , y F (q) cos .

 

   

 


 


 
  
   

        

  
       

  
     

  

     

                                                                               (61) 
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We now study finitely conducting fluid flow and infinitely conducting fluid flow as applications of 

Corollaries I and II. 
 
Finitely conducting fluid 

Using (60) and (61) in equations (30) and (31), we find that F(q) and H (q, )  must satisfy 

              
1

F (q) F (q) F (q) 0 ,
q F (q) k q




                    
 

                                                              (62) 

                  

H
1 1 q

2 2 q

H
F (q) cos F (q)( j G ) sin F (q)( j G )

q

sin F (q)( j G ) cos F (q)( j G ) 0 , (63)


   



   



     

      
 

so that F(q) is the Legendre transform function of a stream function.      

For constant vorticity o
    constant, equation (62) becomes 

               qF (q) F (q) 0 ,
k


                                                                                                                     (64) 

Solving (64) we get 

               1E
F (q) ,

q
                                                                                                                          (65) 

 where 1E is an arbitrary constant.                                                                                                                     

By the expression of x and y in (61) 

               
2 2r x y F (q) ,                                                                                                                    (66) 

and from (65) and (66) 

                1

2 2

E
q .

x y
 


                                                                                                                           (67) 

Using (66) and (67) in equation (34) and (27), we get 

                 

 

 

1
2 2

1
2 2

E y
u x, y

x y

E x
v x, y .

x y

 





                                                                                                                      (68) 

Transforming the diffusion equation (63) back to  x, y  plane we find that  H x, y must satisfy 

                 

2 2
1

H2 2 2 2

E H H H H
x y 0 .

x y y x x y

     
            

                                                                (69) 

A solution for  H x, y is 

 
2 2

2 3

x y
H x, y E ln E ,

2

 
  

 
                           

                                                                          (70) 

where 2E  and 3E are arbitrary constants. 

As           
v u

x, y ,
x y

 
  

 
 we find that  
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                0x, y 0                                                                                                                                   (71)    

Using (68) and (71) in the linear momentum equations of system (6) and integrating, we get  h x, y .

Using this solution for  h x, y and (71) in (5), we get the pressure function as 

             

 
 

 

 
 

22
1 2 11 1 2 21

1 122 2 2 2

2
2 2

2 3 4

2 3 2 EEx y 1
p x, y E tan tan 2E ln x y

k y x 2 x y x y

x y
E ln E E , (72)

2 2

     
        

  

   
    

  
  

where 4E  is an arbitrary constant. 

 
Infinitely conducting fluid             
In this case the transformed diffusion equation reduces to  

            
H

0 .




                                                                                                                               

Therefore we have 

                H x, y q ,             

where  is an arbitrary function of its argument. In the  x, y  plane, we have  

                H x, y q ,                                                                                                                                 (73) 

where q is given by (67). 

       u x, y , v x, y , x, y ,H x, y  are given by (68), (71) , (70) and  p x, y by 

  

 
 

 

 
 

 

22
1 2 11 1 2 21

1 122 2 2 2

2

5

2 3 2 EEx y 1
p x, y E tan tan 2E ln x y

k y x 2 x y x y

q E , (74)
2

     
        

  


    

 

where q is given by (67) and 5E is an arbitrary constant. 

Theorem VII: If    L q, F q   is the Legendre transform function of a stream function for a 

steady,  plane, rotating, transverse, incompressible, finitely conducting second-grade fluid flow 
through porous media then the flow in the physical plane is given by equations (68),  (70), (71)  and 

(72) with  2 2ln x y  constant as its streamlines.  
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Figure 3: Concentric Circular streamlines 

Theorem VIII: If    L q, F q   is the Legendre transform function of a stream function for a 

steady,  plane, transverse, incompressible, infinitely conducting second-grade fluid flow through 
porous media then the flow in the physical plane is given by equations (68), (71), (73) and (74) with

 2 2ln x y  constant as its streamlines. 

 
Application III:  

Let  

                  L q, A B ,                                                                                                                         (75) 

be the Legendre transform function, where A, B are arbitrary constants and A 0.  

Using (75) in equations (29), we obtain 

                 

4

1 22

1 2

2 2

q
j , w w 0 ,

A

1 A H A H
G sin cos ,

q q q q

1 A H A H
G sin cos .

q q q q

   

 


 



    

  
    

  

  
    

  

                                                                                (76)                                               

 
Finitely conducting fluid 

Using (60), (76) in equations (29) and (30) we find that (29) is identically satisfied and  H q,   must 

satisfy 

X

Y

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1
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3
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   

   

*
* * *H

1 12 q

* * *
2 22q

H A A
A sin j G cos j G

q q q q

A A
sin j G cos j G 0 . (77)

q q










    


    


 

Using  *L q, A B    in equation (34) and making use of (27) we obtain  

                   2 2 2 2

Ax Ay
u x, y , v x, y

x y x y
 

 
 ,                                                                                  (78) 

Transforming (77) back to  x, y plane  H x, y must satisfy 

     

2 2

H2 2 2 2 2 2

Ax H Ay H H H
0

x y x x y y x y

    
    

      
.                                                             (79) 

A solution for  H x, y satisfying (65) is found to be  

                 

   

  H

2

1

1
2 2 12H

1 2

A
2 2 2H

3 4

y
tan

yx
H x, y M ln x y M tan

2 A x

M x y M , (80)
A







  
               
 
 


  

  

where   1, 2, 3,M M M and 4M are arbitrary constants. 

Using 0 and (78) in the linear momentum equations of system (6) and integrating, we get 

 h x, y . Using this solution for  h x, y  and (80) in (5) the pressure function is determined to be  

                  

   
 

 
 

    H

2
2 2 1 1

5 2 2

2

1 2 2
2 2

2
2

1

1 A
2 2 1 2 22 2H H

1 2 3 4

A x y 1 A
p x, y M ln x y 2 A tan tan

k y x 2 x y

2A
3 2

x y

y
tan

yx
M ln x y M tan M x y M , (81)

2 2 A x A

 



 

  
       

 

   


   
                        

    
 

where 5M  is an arbitrary constant. 

 
Infinitely conducting fluid 
In this case, the transformed diffusion equation is replaced by  
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*H
A 0

q





. 

Therefore, we get 

                    *H q,     , 

where   is an arbitrary function of its argument. 

In the  x, y  plane we have 

                   1 y
H x, y tan

x
  

    
  

  .                                                                                                      (82) 

Using  *L q, A B    and proceeding as before we get 

                  
2 2 2 2

Ax Ay
u , v

x y x y
 

 
,                                                                                           (83) 

and             
                   

   

 
 

 

2 2 1 1
6

222
1 2 1

22 2 2 2

A x y
p x, y M ln x y 2 A tan tan

k y x

3 2 2AA y
tan , (84)

2 x2 x y x y

 



    
         

   

        
      

     

 

where 6M  is an arbitrary constant. 

Theorem XI: If  *L q, A B    is the Legendre transform function of a stream function for steady, 

plane, rotating, transverse, incompressible, finitely conducting second grade flow through porous 
media, then the flow in the physical plane is given by equations (78), (80) and (81) having 

   1 1y xtan tan
x y

   constant as its streamlines. 

Theorem X: If  *L q, A B    is the Legendre transform function of a stream function for steady, 

plane, rotating, transverse, incompressible, infinitely conducting second grade flow through porous 
media, then the flow in the physical plane is given by equations (82), (83) and (84) having 

   1 1y xtan tan
x y

   constant as its streamlines. 

When there is no rotating frame i.e.    the results of S.Sil, M. Kumar and C. Thakur [30] is 

recovered, while when the rotating frame as well as porous media is absent i.e    and 0
k


   

the results tally with O.P Chandna and P.V. Nguyen [20]. In the absence of rotating frame and for 

non-MHD fluid through porous media the results of M. Kumar [31] is obtained and for non-MHD 
fluid through porous media in a rotating frame the results of S. Sil and M. Kumar [15] is regained. 

And for non MHD fluid in the absence of both rotating frame and porous media the results of A.M. 
Siddiqui, P.N. Kaloni and O.P. Chandna [19] is recovered. 
 
6. Conclusion  
 

The main theme of this work is to obtain analytical solution of nonlinear equations governing the 
flow of second grade fluid in a rotating frame through porous media in the presence of a transverse 
magnetic field by the application of hodograph transformation technique. The flow equations have 
been obtained in terms of Legendre transform function of the stream function. The expressions for 

velocity profile, streamline and pressure distribution are successfully obtained in each case. 
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Streamline patterns are also plotted. The results indicate that for second grade MHD fluid the 

pressure distributions are dependent upon material parameters α1 and α2. Several results of various 
authors (as already mentioned in the text) can be recovered in the limiting cases; as such the present 

analysis is more general. 
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