MDS Block Hankel-like Rhotrices using Conjugate Elements and Self-Dual Bases of Finite Fields

Main Article Content

Gupta S., Narang R., Harish M., Dhiman N.

Abstract

Maximum Distance Separable (MDS) matrices offer ideal diffusion properties and are of great importance in design of block ciphers and hash functions. A rhotrix as defined by Sani is a coupled matrix which when used in a cryptosystem provides double security. Many authors constructed MDS Rhotrices over finite fields using matrices which are cryptographically significant. Hankel matrices have wide range of applications in engineering, coding theory and cryptography. In the present paper, we define block rhotrix and block Hankel- like rhotrix. Further, we construct MDS block Hankel-like rhotrices using self-dual basis and conjugate elements of .

Article Details

Section
Articles