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Abstract This note deals with the problem of determining the approximate solution of
real definite integrals. Approximating the solution of given real definite integrals here is
done by means of mixed quadrature rule which is then compared with the Haar wavelets
for single, double and improper integrals. The main advantage of the proposed numerical
integration method over Haar wavelets is its efficiency, lesser functional evaluation and
simple applicability. Some numerical examples are provided to illustrate the accuracy
and relative error of the proposed rule.
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1 Introduction

In the recent years different types of wavelet approaches have been used in the field of numerical integra-
tion for the benefits of science and technology. Numerical integration is the approximate computation
of an integer involving integral equations and finite element methods. Siraj-ul- Islam et al. [1] have
established wavelet and hybrid functions for numerical evaluation of the real definite integrals. Majid
Rostami et al. [2] have proposed numerical integration rules based on block-pulse functions and Cheby-
shev wavelet to approximate the value of real definite integrals. A. Chakrabarti and S.C. Martha [3]
have developed a straight method for numerical integration of Fredholm integral equation of the sec-
ond kind using the least squares method. The Haar wavelet and the mixed quadrature methods have
gained popularity among researchers due to their useful properties. Haar wavelets have been used in
different numerical approximation problems due to their orthonormal properties with compact support.
Lepik [4] has proposed Haar wavelets in solving differential equation, Lepik and Tamme [5] have applied
the Haar wavelets for solving linear and non linear integral equations . Maleknejad and Mirzaee [6]
have used linear integral equation via Haar wavelets . Lepik [7] used the Haar wavelets in solving non
linear integro-differential equations and partial differential equations,

Mixed quadrature has faster convergence than the Haar wavelets due to its higher degree of precision
for the evaluation of real definite integral. The mixed quadrature of higher precision has been estab-
lished with linear convex combination of Gaussian and Newtonian type rule of lower precision each for
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single and double variables. Recently mixed quadrature rules have been successfully employed for the
numerical solution of integral equations as well as finite element methods. Jena and Nayak [8] have
applied the mixed quadrature rule to find the approximate solution of non linear Fredholm integral
equation of the second kind, Jena and Dash [9] have established mixed quadrature sphere with finite
element approach. Dash and Das [10] have proposed identification of some Clenshaw- Curtis rules with
Fejer rules. Tripathy et al. [11] have used a mixed quadrature of Lobatto four point rule with Gaussian
quadrature for the approximate evaluation of real definite integrals.

Motivated by the excellent performance of these methods, here we will apply the same technique with
less functional evaluation for numerical integration of real definite integrals for single as well as double
integrals for(h ≥ 4) and(h < 4)for improper integrals respectively and compare the result with [1]. The
organization of this paper is as follows. In section 2 numerical integration using Haar wavelets is
described and in section 3 mixed quadrature rule is used for numerical integration. Error analysis for
mixed quadrature is given in section 4 and lastly, numerical results are reported in section 5.

2 Numerical integration using Haar wavelets

In this section we consider numerical integration for single and double integrals using Haar wavelets.
The scaling function for the family of Haar wavelet functions defined on the interval [α, β) is

ϕ1 (x) =

{

1 for x ∈ [α, β)
0 elsewhere

(2.1)

The mother wavelet for the Haar wavelets family defined on the interval [α, β) is

ϕ2 (x) =







1 for x ∈ [α, α+β

2

)

−1 for x ∈ [ α+β

2
, β
)

0 elsewhere

(2.2)

 

Fig. 1: Comparison of Exact result, Haar wavelets and Mixed quadrature of function
g (x) = sin (πx) for M = 4.

2.1 Numerical integration for single integrals

We consider the integral
∫ b

a

g (x) dx (2.3)
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over the interval [α, β], the function g (x) can be approximated using Haar wavelets as

∫ β

α

g (x) dx ≈ (β − α)

2M

2M
∑

k=1

g

(

α+
(β − α) (k − 0.5)

2M

)

(2.4)

where the maximal level of resolution is the integer h, M = 2h, where h = 0, 1, ....J, J = 2M .

2.2 Numerical technique for double integrals
We now consider the integral

∫ δ

σ

∫ β

α

g (x, y) dxdy (2.5)

The function g (x, y) can be approximated using Haar wavelets as

∫ δ

σ

∫ β

α

g (x, y) dx dy ≈ (β − α) (δ − σ)

(2M)2

2M
∑

l=1

2M
∑

k=1

g (xk, yl) (2.6)

∫ δ

σ

∫ β

α

g (x, y) dxdy ≈ (β − α) (δ − σ)

(2M)2

2M
∑

l=1

2M
∑

k=1

g

(

α+
(β − α) (k − 0.5)

2M
,σ +

(δ − σ) (l − 0.5)

2M

)

(2.7)

where

xk = α+
(β − α) (k − 0.5)

2M

yl = σ +
(δ − σ) (l − 0.5)

2M
k, l = 1, 2, ..., 2M

(2.8)

In both cases the Haar wavelets approximation converges rapidly to the exact function by increasing
the value of M .

3 Mixed Quadrature Rule

In this section we propose the numerical integration of single and double variables using mixed quadra-
ture rules.

3.1 Numerical technique for single integrals
Lemma 3.1. If the smooth function f (x) is defined on −1 ≤ x ≤ 1, then the mixed quadrature rule
RGL32F5 (f) and error due to mixed quadrature for the numerical integration is

I (f) = RGL32F5 (f) + EGL32F5 (f) .

Proof. Gauss Legendre 3-point rule is

RGL3 (f) =

[

5

9

{

f

(

−
√

3

5

)}

+ 8f (0) +
5

9

{

f

(

√

3

5

)}]

Fejer’s five point second rule for single integral is

R2F5 (f) =
2

45

[

7

(

f

(
√
3

2

)

+ f

(

−
√
3

2

))

+ 13f (0) + 9

(

f

(

1

2

)

+ f

(

− 1

2

))]

each of the constituent rule RGL3 (f) andR2F5 (f) is of precision five. Let EGL3 (f) and E2F5 (f) denote
the errors in approximating the integral I (f) by the rules RGL3 (f) and R2F5 (f) respectively.

I (f) = RGL3 (f) + EGL3 (f) (3.1)

I (f) = R2F5 (f) + E2F5 (f) . (3.2)

Using Maclaurin’s expansion in (3.1) and (3.2), we get

EGL3 (f) ∼=
8

175× 6!
f
vi (0) +

88

1125× 8!
f
viii (0) + . . .
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E2F5 (f) ∼=
1

67200
f
vi (0) +

1

1814400
f
viii (0) + . . .

Multiplying (3.1) by
(

1

64

)

and (3.2) by
(

1

15

)

respectively and subtracting them we have

I (f) =

∫ 1

−1

f (x) dx ∼= 1

49
[64R2F5 (f)− 15RGL3 (f)] +

1

49
[64E2F5 (f)− 15 EGL3 (f)]

I (f) = RGL32F5 (f) + EGL32F5 (f)

where

RGL32F5 (f) =
1

49
[64R2F5 (f)− 15RGL3 (f)] (3.3)

and

EGL32F5 (f) =
1

49
[64E2F5 (f)− 15EGL3 (f)] (3.4)

(3.3) and (3.4) are the required mixed quadrature rule and error due to the mixed quadrature rule.

Lemma 3.2. (For double integrals): The quadrature rule and error for the smooth function f (x, y)
which is defined on 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 is obtained by convex combination of RGL3 (f) rules
and Fejer’s five point second rule respectively EGL3 (f) and E2F5 (f)

I (f) = RGL32F5 (f) + EGL32F5 (f) .

Proof. Gauss Legendre 3-point rule is

RGL3 (f) =
1

81











5
{

5f
(

−
√

3

5
, −
√

3

5

)

+ 8f
(

−
√

3

5
, 0
)

+ 5f
(

−
√

3

5
,
√

3

5

)}

+

8
{

5f
(

0, −
√

3

5

)

+ 8f (0, 0) + 5f
(

0,
√

3

5

)}

+

5
{

5f
(
√

3

5
, −
√

3

5

)

+ 8f
(
√

3

5
, 0
)

+ 5f
(
√

3

5
,
√

3

5

)}











(3.5)

Fejer’s five point second rule is

R2F5 (f) =

4

2025























{

49f
(√

3

2
,

√
3

2

)

+ 49f
(√

3

2
, −

√
3

2

)

+ 91f
(√

3

2
, 0
)

+ 63f
(√

3

2
, 1

2

)

+ 63f
(√

3

2
, − 1

2

)}

+
{

49f
(

−
√

3

2
,

√
3

2

)

+ 49f
(

−
√
3

2
, −

√
3

2

)

+ 91f
(

−
√
3

2
, 0
)

+ 63f
(

−
√
3

2
, 1

2

)

+ 63f
(

−
√
3

2
, − 1

2

)}

+
{

91f
(

0,
√
3

2

)

+ 91f
(

0, −
√
3

2

)

+ 169f (0, 0) + 117f
(

0, 1

2

)

+ 117f
(

0, − 1

2

)

}

+
{

63f
(

1

2
,

√
3

2

)

+ 63f
(

1

2
, −

√
3

2

)

+ 117f
(

1

2
, 0
)

+ 81f
(

1

2
, 1

2

)

+ 81f
(

1

2
, − 1

2

)

}

+
{

63f
(

− 1

2
,

√
3

2

)

+ 63f
(

− 1

2
, −

√
3

2

)

+ 117f
(

− 1

2
, 0
)

+ 81f
(

− 1

2
, 1

2

)

+ 81f
(

− 1

2
, − 1

2

)

}

+























(3.6)
each of the constituent rule RGL3 (f) and R2F5 (f) is of precision five. Let EGL3 (f) and E2F5 (f)
denotes the errors in approximating the integral I (f) by the rules RGL3 (f) and R2F5 (f) respectively.

I (f) = RGL3 (f) + EGL3 (f) (3.7)

I (f) = R2F5 (f) + E2F5 (f) (3.8)

Using Maclaurin’s expansion in (3.7) and (3.8)

EGL3 (f) = 16

175×6!
[f6,0 (0, 0) + f0,6 (0, 0)]+

64

75×8!
[f6,2 (0, 0) + f2,6 (0, 0)] +

286256

703125×8!
[f8,0 (0, 0) + f0,8 (0, 0)] + . . .

E2F5 (f) = 3

140×6!
[f6,0 (0, 0) + f0,6 (0, 0)]+

1

201600
[f6,2 (0, 0) + f2,6 (0, 0)] +

2

45×8!
[f8,0 (0, 0) + f0,8 (0, 0)] + . . .

Multiplying (3.7) by
(

3

4

)

and (3.8) by
(

16

5

)

respectively and subtracting them, we have

I (f) =

∫ 1

−1

∫ 1

−1

f (x, y) dx dy ∼= 1

49
[64R2F5 (f)− 15RGL3 (f)] +

1

49
[64E2F5 (f)− 15 EGL3 (f)]
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I (f) = RGL32F5 (f) + EGL32F5 (f)

where

RGL32F5 (f) =
1

49
[64R2F5 (f)− 15RGL3 (f)] (3.9)

and

EGL32F5 (f) =
1

49
[64E2F5 (f)− 15EGL3 (f)] (3.10)

(3.9) and (3.10) give the required mixed quadrature rule and the estimated error.

4 Error Analysis

Lemma 4.1. Let f (x) be sufficiently differentiable function in the closed interval [−1, 1]. The bounds
of truncational error for single integrals EGL32F5 (f) associated with the ruleRGL32F5 (f) is given by

|EGL32F5 (f)| ∼=
1

7937967

∣

∣

∣
f
viii (0)

∣

∣

∣
.

Lemma 4.2. Let f (x, y) be sufficiently differentiable function in the closed interval [−1, 1]. The bounds
of truncational error for double integrals EGL32F5 (f)associated with the rule RGL32F5 (f) is given by

|EGL32F5 (f)| ∼=
458768

6890625× 8!
|f8,0 (0, 0) + f0,8 (0 , 0)| .

Lemma 4.3. The error bound for the truncation error is given by |EGL32F5 (f)| ≤ 8K
1715×5 !

where

K = max
−1≤x≤1

∣

∣fvii (x)
∣

∣ .

Proof.

EGL3 (f) ∼=
8

175 × 6 !
f
vi (η1) ,

E2F5 (f) =
1

67200
f
vi (η2) where η1, η2 ∈ [−1, 1] .

As fvi (x) is continuous and bounded in [−1, 1] , so there exist points c and d in the interval [−1, 1]
such that k1 = fvi (c) and k2 = fvi (d) where k1 = max

−1≤x≤1

∣

∣fvi (x)
∣

∣ and k2 = min
−1≤x≤1

∣

∣fvi (x)
∣

∣.

|EGL32F5 (f) | ∼= 4

1715×5!

{

fvi (c)− fvi (d)
}

= 4

1715×5!

∫ d

c
fvii (x) dx

= 4

1715×5!
(d− c) fvii (ζ)

for some ζ ∈ [−1, 1] .

By Mean Value Theorem |c− d| ≤ 2 (Conte and Boor [12]), then

|EGL32F5 (f) | ≤
8

1715× 5!
f
vii (ζ)

|EGL32F5 (f) | ≤ 8 K
1715×5 !

where K = max
−1≤x≤1

∣

∣fvii (x)
∣

∣ .

Lemma 4.4. The bounds for the truncational error|EGL32F5 (f)| ≤ 96K
1715×6!

(η2 − η1), where η1, η2 ∈
[−1, 1] and K = max

−1 ≤ x ≤ 1
−1 ≤ y ≤ 1

|f7,0 (x, ∗) + f0,7 (∗, y)| .

Proof. E2F5 (f) = 3

140×6!
[f6,0 (η1) + f0,6 (η1)] EGL3 (f) = 16

175×6!
[f6,0 (η2) + f0,6 (η2)] where η1, η2 ∈

[−1, 1] .
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EGL32F5 (f) =
1

49
[64E2F5 (f)− 15EGL3 (f)]

=
48

1715× 6!
[f6,0 (η2, 0) + f0,6 (0, η2)− f6,0 (η1, 0)− f0,6 (0, η1)]

=
48

1715× 6!





η2
∫

η1

f7,0 (x, 0) dx+

η2
∫

η1

f0,7 (0, y) dy





=
48

1715× 6!

η2
∫

η1

η2
∫

η1

[f7,0 (x, ∗) + f0,7 (∗, y)] dx dy

|EGL32F5 (f)| 6
48K

1715× 6! (η2 − η1)
|η2 − η1|2

6
48K

1715× 6!
(η2 − η1)

where K = max
−1 ≤ x ≤ 1
−1 ≤ y ≤ 1

|f7,0 (x, ∗) + f0,7 (∗, y)| ,

which gives only the truncational error bound on η1, η2 which are known points in [−1, 1]. From the
above it is clear that the error in approximation will be less if the points η1, η2 are close to each other.

Corollary 4.5. The error bound for the truncational error EGL32F5 (f) is given by |EGL32F5 (f)| ≤
96K

1715×6!
when |η1 − η2| ≤ 2 (Conte and Boor [12]).

5 Numerical Examples

In this section some numerical examples are taken to validate our proposed work.

Example 5.1.

I1 =

∫ 1

0

sin(x2) dx =
1

2

∫ 1

−1

sin

(

(

t+ 1

2

)2
)

dt

Example 5.2.

I2 =

∫ 5

0

√

x2 − 5x+ 31 dx =
5

2

√

(

5 (t+ 1)

2

)2

− 5

(

5 (t+ 1)

2

)

+ 31 dt

Example 5.3. (Improper Integral)

I3 =

∫ 1

0

e−
1

x

x2
dx =

∫ ∞

1

e
−u

du =

∫ e−1

0

dt =
1

2

∫ 1

−1

e
−1

dv

Example 5.4.

I4 =

∫ π

2

0

∫ π

0

sin(x+ y) dx dy =
π2

8

∫ 1

−1

∫ 1

−1

sin
(π

2
(t+ 1) +

π

4
(z + 1)

)

dt dz

Example 5.5. (Improper Integral)

I5 =

∫ 1

0

∫ 1

0

1

(x2 + y2)
dy dx =

(

δ − σ

2

)(

β − α

2

) m
∑

j=1

n
∑

i=1

cjcig (xi, yj)

(For Improper integral in double integration only we use (3.5), (3.6) and substitute them in (3.9).)
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Table 1: Relative error of Example 5.1

Siraj-ul- Islam et al.
[1]

Due to
RGL32F5 (f)

J = 4 1.4177e-04

J = 5 3.5432e-05 2.5865e-06

J = 6 8.8574e-06

J = 7 2.2143e-06

Table 2: Relative error of Example 5.2

Siraj-ul- Islam et al.
[1]

Due to
RGL32F5 (f)

J = 4 3.5293e-05 2.4307e-07

J = 5 8.8229e-06

J = 6 2.2057e-06

J = 7 5.5143e-07

Table 3: Relative error of Example 5.3

Siraj-ul- Islam et al.
[1]

Due to
RGL32F5 (f)

J = 4 4.0642e-05 0.0000

J = 5 1.0173e-05

J = 6 2.5431e-06

J = 7 6.3578e-07

Table 4: Relative error of Example 5.4

Siraj-ul- Islam et al.
[1]

Due to
RGL32F5 (f)

J = 4 5.0215e-04 3.4026e-006

J = 5 1.2551e-04

J = 6 3.1375e-05

J = 7 7.8437e-06

Table 5: Relative error of Example 5.5

Siraj-ul- Islam et al.
[1]

Due to
RGL32F5 (f)

J = 4 7.1275e-03 1.4921e-002

J = 5 3.5719e-03

J = 6 1.7880e-03

J = 7 8.9450e-04
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