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Abstract An analysis is carried out in this paper to study two-dimensional and axisym-
metric flow of a viscous incompressible fluid between two parallel plates. The governing
non-linear equation of the flow problem is transformed into a linear differential equation
using quasilinearization technique (Bellman and Kalaba (1965), Quasilinearization and
non-linear boundary value problems, American Elsevier Publishing Company Inc., New
York) and quintic spline collocation method is applied to solve the linear problem (Bick-
ley (1968), Piecewise cubic interpolation and two-point boundary value problems, Comp.
J., 11, 206-208). The numerical results obtained by this method are compared with ho-
motopy perturbration method (HPM) and the Runge-Kutta fourth order method. The
physical interpretation is discussed and the results are demonstrated graphically.

Key words Squeezing flow, Non-linear equation, Spline collocation method, Quasilin-
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1 Introduction

Squeezing flow arises in many engineering and biological systems. Squeezing flow between parallel walls
occurs in polymer processing, compression, and injection molding and it also demonstrates the lubrica-
tion system. Stefan [17] studied squeezing flow by using lubrication assumption. In 1886 Reynolds [16]
deliberated his work for elliptic plates, and Archibald [1] investigated the squeezing flow between the
rectangular plates. Squeezing flow model is studied by several researchers to make it more understand-
able [7,18,19,21]. Analytic solutions for unsteady two-dimensional and axisymmetric squeezing flows
between parallel plates are presented by Rashidi et al. [15]. The effects of fluid inertia squeezed films
between two circular glasses plates were studied by Kuzma [14]. The homotopy perturbation method
(HPM) was introduced by the Chinese researcher J. H. He (see [8-13]). Ariel et al. [2] applied this
method to axisymmetric flow over a stretching sheet. The series solution of the two-dimensional and
axisymmetric unsteady flows due to normally expanding or contracting parallel plates was obtained
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by Ghorbani [6]. In many practical situations the equations describing the flow are non-linear and
it is often difficult to find exact solution. To overcome this problem, several numerical schemes are
developed to approximate the solution in a better way, one such techniques is the Spline Collocation
technique, which is very effective and easy to apply. Bickley [4] considered the use of cubic splines
for solving linear two-point boundary value problems, which leads to the solution of a set of linear
algebraic equations. The purpose of the present paper is to apply the cubic spline procedure for finding
the numerical solution of a linear boundary value problem. The obtained results are compared with
those obtained by the Runge-Kutta fourth order method and the HPM.

2 Mathematical Formulation
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Fig. 1: Schematic Diagram of Unsteady Fluid Problem.

Let the position of the two plates be at z = +Ily/1 — at, where [ is the position at time ¢ = 0 as
shown in the Fig. 1. Let us consider the length [(in the two-dimensional case) or the diameter D (in
the axisymmetric case) are significantly larger than the gap width 2z at any time. The two plates are
squeezed if o > 0, until they touch at t = é, the plates are separated if @ < 0. The velocity components
in the x,y and z directions are u,v and wrespectively.

Wang [20] introduced the transformations as mentioned below for the two- dimensional flow,

= 2(1 at? fl (77) )

— 5=/ () @1)

where, n = l\/%at
Substituting the above transformations into the unsteady two —dimensional Navier-Stokes equation

yields _
fZ’U + S {_nfl// _ 3f// _ f/f// + ff//l} — 0 (2.2)
al

2 .
where, S = % is the squeeze number.

The boundary conditions are given by,

f(0)=0,f"(0)=0
U — o, (2.3)

v = ﬁf/ (), (2.4)
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Using the transformations (2.4), unsteady axisymmetric Navier-Stokes equation reduces to,
f’il}+S{_nf///_3f//+ff///}:0 (25)

subject to (2.3).
The following non-linear ordinary differential equation is to be solved

fi'u Jr S{*T]vf”/ _ 3f// 7ﬁf’f” Jr ff///} — 0 (26)

where, 8 = 0 for the axisymmetric case and 8 = Ilfor the two-dimensional case subject to the boundary
condition (2.3).

The governing differential equation of squeezing flow problem was also studied by Dinarvand and
Moradi [5].

3 Spline Solution of Unsteady Flows

An application of quasilinearization method to the non-linear boundary value problem (2.6) is made
to convert it into a linear boundary value problem. Let iindicate the number of iterations for f; and
its consequent expressions then, using (2.6), the equation for f;1is described as,

PR A S+ 1) Fn =S (34 B1) £l = SBE fia + 81 i = S187 = 581 1

and the boundary conditions are

fi+1(0) =0, fiy1(0) =0, fiya (1) =1, fira (1) = 0.
In order to obtain a cubic spline approximation, let us begin with fo () = an®+bn>+cn+d substituting
and satisfying the conditions as an initial guess. This is found to be,
1 3
fo (i) = —577? + o hi-
Divide [0, 1] into n equal subintervals. The cubic spline for this particular problem is
s (m:) = ao + blo (n: *77170) + 3co (m - 10)° + do (i —no)® + 25e0 (i — m0)*
+ 125 2oh—o Jr (M — M)
The unknowns ao, bo, co, do, €0, fo, fi,-.., fn—1 are to be determined by solving the following system of
equations for ¢ =0,1,2,...,n:

n—1 / _ !
DS {(m — k) + (—L;—Sfi)(m —m)? + M(m — )’ + M(m — )"+
k=0

6 24
P = )| o |14 5+ 57 =) + I gy CEID gy
(Séfi ) (mi — no)“] +do {(fsm +Sfi) + (=35 — BSf) (ni — o) + %(m — o)+
(SJ; Yo - ’70)3] +co {(—35 = BSfi") + (=BSfi") (i —mo) + %(m —m0)*| +

bo [(_Bsfz//) + (Sfi///) (77i _ 770)] +ao [(szll/)] _ Sfifim _ Sﬂfi”fil
The boundary conditions give following equations,

apg = O,Co =0
ao+bo (1 —m0) + 3co (1 =m0)* + §do (1 = m0)® + a5€0 (1= n0)* + 135 Sonco fx (1 —mi)5 =1
bo +co (1= o) + 5do (1 = 10)* + geo (1 —m0)* + 55 52 fr (1 — i)} = 0.

We can write the above equations in a matrix form AX = B, let consider h = é so that n = 6. In this
case, the matrix A is an (11 x 11) upper triangular matrix. The quintic spline s (1) of the equation is
then accomplished for which we present the values at different points in the tables: Table 1 and Table
2.
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Table 1: Spline results of f (n) at different terms for the Axisymmetric Flow.

S X | Spline Solution | Runge-Kutta 4 | HPM
-1.5 | 0.2 | 0.333597 0.333618 0.333618
-1.5 | 0.4 | 0.624378 0.624358 0.624358
-1.5 | 0.6 | 0.839314 0.839325 0.839325
-1.5 | 0.8 | 0.962974 0.962984 0.962984
-0.5 | 0.2 | 0.305486 0.305545 0.305545
-0.5 | 0.4 | 0.582445 0.582470 0.582470
-0.5 | 0.6 | 0.804384 0.804392 0.804392
-0.5 | 0.8 | 0.949106 0.949108 0.949108
0.5 | 0.2 | 0.288260 0.288260 0.288260
0.5 |04 | 0.556145 0.556143 0.556143
0.5 | 0.6 |0.781673 0.781671 0.781671
0.5 | 0.8 | 0.939641 0.93964 0.93964
1.5 | 0.2 | 0.276353 0.276432 0.276432
1.5 | 0.4 | 0.537760 0.537752 0.537752
1.5 | 0.6 | 0.765262 0.765249 0.765249
1.5 | 0.8 | 0.932471 0.932471 0.932471

4 Summary and Conclusion

The governing non-linear differential equation of fourth order is treated numerically with spline col-
location method. For several values of S the tables — Table 1 and Table 2 describe the comparison
of the solutions obtained by using the quintic spline approximation, the HPM and the Runge-Kutta
fourth order method for the axisymmetric and two-dimensional cases. Figure 2 demonstrates the effect
of f’ (n)with the variation in the positive values of S for the two-dimensional case. Figure 3 displays
the influence of negative S onf’ (n)for the axisymmetric case. Figure 4 and Figure 5 are pictorial rep-
resentation of skin friction and pressure gradient for axisymmetric and two-dimensional squeezing flow
respectively. The solutions obtained by spline function show good agreement and remarkable accuracy
with the solutions obtained through the HPM and the Runge-Kutta fourth order method.
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Fig. 4:  The Skin Friction f” (1) for the Axisymmetric flow and the Two-
dimensional flow.
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Fig. 5: The Pressure Gradient f”’ (1) for the Axisymmetric flow and the Two-dimensional
flow.
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