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Abstract In this paper we consider a symmetric matrix A2 which is the square of an
unknown matrix A with only the two numbers +1 and −1 as its entries and we establish
the existence of a special type of square matrix A2. From this special square matrix A2

all the possible matrices A can be obtained and used for the construction of Hadamard
matrices. These Hadamard matrices are much useful in coding theory, communication
theory, signal processing and cryptography.

Key words Hadamard matrix, Block matrix, Hadamard conjecture.

2020 Mathematics Subject Classification 05B20, 15B34.

1 Introduction

There are various types of matrices in the literature having distinct properties useful for numerous
applications. The famous matrix with orthogonal property was introduced by Sylvester [10] and further
studied by Hadamard [1] which is now known as the Hadamard matrix. Hadamard matrix has a wide
range of applications in coding theory, combinatorial designs, communication theory and cryptography.
It plays a major role in theory and construction of experimental designs. The Hadamard matrix H is
a square matrix which satisfies the property HHT = nInand has all its entries as +1 or −1. The inner
product of any of the two rows or columns of a Hadamard matrix is zero. This property is called the
orthogonality. The well-known Hadamard conjecture is that “there exists a Hadamard matrix for every
order 4n where, n is a positive integer”. That is, “a Hadamard matrix of order n×n exists iff n = 2, or,
n ≡ 0 (mod 4)”. There are several methods to construct Hadamard matrices. Kimura and Ohmori [2]
constructed Hadamard matrices of order 28. Koukouvinos and Seberry [3] used orthogonal designs,
Singh et al. [8] and Singh and Manjhi [9] constructed using Balanced Incomplete Block Design (BIBD)
and Frobenius groups, Sajadieh et al. [6] used Vandermonde matrices for the construction. Miyamoto [5]
constructed a series of Hadamard matrices by proving the existence of Hadamard matrices of order
4q for prime power q if there is a Hadamard matrix of order q − 1, using C-matrix. With elements
from the elementary abelian group Zp × Zp × . . . × Zp, Seberry [7] constructed generalized Hadamard
matrices of order pr(pr − 1), where pr and pr − 1 are both prime powers.
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2 Preliminaries

Manjhi and Kumar [4] used a square matrix A of order n consisting only of the elements +1 or −1
satisfying the property 3A2 = −nJn + 4nIn, where Jn is a square matrix of order n consisting of 1 as
all its elements to construct a Hadamard matrix. In particular they showed that the matrix H defined
as below is a Hadamard matrix of order 4n:

H =









Jn A A A

−A Jn A −A

−A −A Jn A

−A A −A Jn









3 Main results

In this paper we prove that there exists a symmetric matrix A with its entries as only the elements of
the set {−1, +1} of order n = 3t, for every positive integer t which implies the existence of a special
type of matrix A2 that satisfies the condition 3A2 = −nJn + 4nIn, where Jnis a square matrix of
order n whose all entries are 1. As mentioned above that Manjhi and Kumar [4] used the same type
of matrix A and satisfying the very same relation for the construction of Hadamard matrices but they
did not answer the crucial question ‘how to find the matrix A?’ In this paper we provide an answer to
this question by retrieving all the possible symmetric matrices A from the special matrix A2 and use
the same for the construction of Hadamard matrices. This method has much importance due to its
multiplicity and the Hadamard matrices so obtained can be used effectively in cryptography, coding
theory, communication theory and signal processing.

Proposition 3.1. Let A be a symmetric matrix of order n = 3t, t = 1 with the entries ±1, then A2 is

a symmetric matrix with entries ±3t and ±t only, 3t being the principal diagonal entries.

Proof. Consider the symmetric matrix A of order n = 3t, t = 1 with ±1 as its elements. The first
row and hence the first column of A can be obtained in 23 = 8 ways as its elements are the binary
digits {−1, +1}. Now the second row of A excluding the first element in second row and consequently
the second column of the matrix A exclusive of the first element in second column shall be formed in
22 = 4 ways. After deciding the second row (second column), the third row (third column) exclusive of
the first two entries in their respective rows (columns) shall be obtained in 21 = 2 ways. Thus, we can
form 23 × 22 × 2 = 64symmetric matrices of order n = 3t with ±1. For each of these 64 matrices we

may form the matrices A2. Let A be the symmetric matrix





a b c

b d e

c e f



of order 3 with ±1 entries,

then

A
2 =





a2 + b2 + c2 ab + bd + ce ac + be + cf

ab + bd + ce b2 + d2 + e2 bc + de + ef

ac + be + cf bc + de + ef c2 + e2 + f2





The principal diagonal elements are always 3 as each element is the sum of 3 squares of ±1. The other
elements, each one is the sum of three terms in which each term is the product of two ±1’s. Hence
each sum can be any one of the following 23 = 8 types:

(1, 1, 1) , (1, 1,−1) , (1,−1, 1, ) , (1,−1,−1) , (−1, 1, 1, ) , (−1, 1,−1) , (−1,−1, 1) , (−1,−1,−1) .

Obviously, the respective sums are 3, 1, 1,−1, 1,−1,−1,−3 which means that the elements in the matrix
A2 are ±t,±3t.

Illustration 3.2. Let A =





1 −1 1
−1 1 1

1 1 −1



 be of order n = 3t, t = 1, then

A
2 =





3 −1 −1
−1 3 −1
−1 −1 3



 =





3t −t −t

−t 3t −t

−t −t 3t




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Corollary 3.3. If A is a square matrix of order n = 3t, t = 1 with the entries ±1, then A2 is a matrix

of order n with entries ±t and ±3t.

Proof. The proof is like the one used in the Proposition 3.1. In the principal diagonal entries, each ele-
ment is the sum of three terms in which any one term is a square and for the other two terms, each one is
the product of two elements. The following are the possibilities:(1, 1, 1) , (1, 1,−1) , (1,−1, 1) , (1,−1,−1).
Clearly, we get the sum 3, 1, 1,−1 respectively. The same argument shall be used to establish that the
other entries in the matrix A2 are ±1 and ±3, means all entries are of the form ±t and ±3t.

Illustration 3.4. Let A =





1 1 −1
−1 1 1

1 −1 1



 ⇒ A2 =





−1 3 −1
−1 −1 3

3 −1 −1



 =





−t 3t −t

−t −t 3t

3t −t −t



 .

Proposition 3.5. Let A be a symmetric matrix of order n = 3t, t = 2 with ±1 entries. Then A2 is a

symmetric matrix of order n with the entries 0,±t,±2t,±3t, the principal diagonal elements being 3t.

Proof. In A2, the principal diagonal entries are the sum of 6squares of either +1 or −1, which clearly
yields the sum 3t = 6. The other elements, each one being the sum of 6 terms in which each term is
a product of ±1 and ±1. There are 26 = 64 possibilities of getting each sum and on verification it is
found that the sums are 0,±t,±2t,±3t.

Note 3.6. When n = 3t is the order of A, where t = 3, the elements of A2 are of the form
± (t − 2) ,±t,± (t + 2) ,± (2t + 1) ,±3t. The principal diagonal entries are all 3t.

Theorem 3.7. If A is a symmetric matrix of order n = 3t, t = 1, 2, 3, . . . with ±1 elements then A

satisfies the matrix equation 3A2 = −nJn + 4nIn,if and only if the matrix A2 is of the form




















3t −t −t · · · −t −t

−t 3t −t · · · −t −t

−t −t 3t · · · −t −t

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
−t −t −t · · · 3t −t

−t −t −t · · · −t 3t





















where Jn is an all 1 matrix of order n and In is a unit matrix of order n.

Proof. This can be proved by induction on t. Let Abe of order n = 3t, t = 1 and 3A2 = −nJn + 4nIn

then

−nJn + 4nIn = 3





1 1 1
1 1 1
1 1 1



 + 4 × 3





1 0 0
0 1 0
0 0 1





=





9 −3 −3
−3 9 −3
−3 −3 9



 = 3





3 −1 −1
−1 3 −1
−1 −1 3





= 3





3t −t −t

−t 3t −t

−t −t 3t



 = 3A2 ⇒ A2 =





3t −t −t

−t 3t −t

−t −t 3t





Conversely, let

A
2 =





3t −t −t

−t 3t −t

−t −t 3t



 =





3 −1 −1
−1 3 −1
−1 −1 3



 since, t = 1

∴ 3A2 =





9 −3 −3
−3 9 −3
−3 −3 9



 =





−3 −3 −3
−3 −3 −3
−3 −3 −3



 +





12 0 0
0 12 0
0 0 12





= −3





1 1 1
1 1 1
1 1 1



 + 12





1 0 0
0 1 0
0 0 1



 = −3J3 + 4 × 3I3

= −nJn + 4nIn for n = 3.
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Now assume the theorem be true for n = 3m, where, t = m, i.e., 3A2 = −3mJ3m + 4 × 3mI3m. When
t = m + 1, n = 3 (m + 1), then,

3A2 = −nJn + 4nIn

= − (3m + 3) J3m+3 + 4 (3m + 3) I3m+3

= −3mJ3m+3 + 4 (3m) I3m+3 − 3J3m+3 + 4 (3) I3m+3

=

















9m −3m −3m · · · −3m

−3m 9m −3m · · · −3m

−3m −3m 9m · · · −3m

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

−3m −3m −3m · · · 9m

















(3m+3)×(3m+3)

+

















9 −3 −3 · · · −3
−3 9 −3 · · · −3
−3 −3 9 · · · −3
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
−3 −3 −3 · · · 9

















(3m+3)×(3m+3)

= 3

















3 (m + 1) − (m + 1) − (m + 1) · · · − (m + 1)
− (m + 1) 3 (m + 1) − (m + 1) · · · − (m + 1)
− (m + 1) − (m + 1) 3 (m + 1) · · · − (m + 1)

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

− (m + 1) − (m + 1) − (m + 1) · · · 3 (m + 1)

















(3m+3)×(3m+3)

= 3A2 for t = m + 1.

Similarly, by reversing the above steps, the converse can also be seen to be true, which establishes the
validity of the theorem for n = 3 (m + 1) , m = 0, 1, 2, . . ., i.e. for n = 3, 6, 9, 12, . . . .

Illustration 3.8. Let A be a symmetric matrix of order n = 3t, t = 2 with ±1 elements. Then

A
2 =

















3t −t −t −t −t −t

−t 3t −t −t −t −t

−t −t 3t −t −t −t

−t −t −t 3t −t −t

−t −t −t −t 3t −t

−t −t −t −t −t 3t

















=

















6 −2 −2 −2 −2 −2
−2 6 −2 −2 −2 −2
−2 −2 6 −2 −2 −2
−2 −2 −2 6 −2 −2
−2 −2 −2 −2 6 −2
−2 −2 −2 −2 −2 6

















.

Then

3A
2 =

















18 −6 −6 −6 −6 −6
−6 18 −6 −6 −6 −6
−6 −6 18 −6 −6 −6
−6 −6 −6 18 −6 −6
−6 −6 −6 −6 18 −6
−6 −6 −6 −6 −6 18

















,

and
−nJn + 4nIn = −6Jn + 24In

=

















−6 −6 −6 −6 −6 −6
−6 −6 −6 −6 −6 −6
−6 −6 −6 −6 −6 −6
−6 −6 −6 −6 −6 −6
−6 −6 −6 −6 −6 −6
−6 −6 −6 −6 −6 −6

















+

















24 0 0 0 0 0
0 24 0 0 0 0
0 0 24 0 0 0
0 0 0 24 0 0
0 0 0 0 24 0
0 0 0 0 0 24

















=

















18 −6 −6 −6 −6 −6
−6 18 −6 −6 −6 −6
−6 −6 18 −6 −6 −6
−6 −6 −6 18 −6 −6
−6 −6 −6 −6 18 −6
−6 −6 −6 −6 −6 18

















= 3A2.

The converse is trivial.

Theorem 3.9. If A2 =





3t −t −t

−t 3t −t

−t −t 3t



 then there exists a symmetric matrix A of order n = 3t, t =

1 with ±1 elements.
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Proof. Given that the matrix A is of order n = 3t, t = 1, therefore,

A
2 =





3 −1 −1
−1 3 −1
−1 −1 3



 .

The principal diagonal elements are always 3. So that let us examine only the cases for getting the
product −1. The first row of the matrix A shall be any one of the following eight possibilities namely,

(1, 1, 1) , (1, 1,−1) , (1,−1, 1, ) , (1,−1,−1) , (−1, 1, 1, ) , (−1, 1,−1) , (−1,−1, 1) , (−1,−1,−1)

The sum of the product of a row vector (a1, a2, a3) with a column vector (b1, b2, b3)
T is −1, if any one

element or any two elements of the row vector are −1. So the possibilities (1, 1, 1) and (−1,−1,−1)
are ruled out.
Case 1. Any one element of the row vector is −1.
Let a3 = −1. So that the element b3 in the column vector must be +1 and any one of the other
two elements, viz., b1 or b2 must be −1. Hence corresponding to the row vector (a1, a2,−a3) the
column vector is (b1,−b2, b3)

T or (−b1, b2, b3)
T . The first row and the first column of the matrix A

is (a1, a2,−a3), A being symmetric. The second, third columns are (b1,−b2, b3)
T and (−b1, b2, b3)

T

respectively. So, we get the desired matrix A as

A =





1 1 −1
1 −1 1

−1 1 1



 .

Similarly for the first row (1,−1, 1) the second and third columns are (−1, 1, 1)T or (1, 1,−1)T . So
that,

A =





1 −1 1
−1 1 1

1 1 −1



 .

Corresponding to the first row (−1, 1, 1) or the first column (−1, 1, 1)T the matrix A =





−1 1 1
1 −1 1
1 1 −1



 .

In this matrix A we can permute the second and third columns to obtain

A =





−1 1 1
1 1 −1
1 −1 1



 .

Case 2. Any two elements of the row vector are −1.
Let a2 = a3 = −1. So that the element b1 in the column vector must be −1and any one of the other
two elements namely b2 or b3 must be −1. Corresponding to the first row (1,−1,−1) the second and
third columns are (−1, 1,−1)T and (−1,−1, 1)T respectively. Therefore, the matrix A is obtained as

A =





1 −1 −1
−1 1 −1
−1 −1 1



 .

We may permute the second and third columns of the above matrix to construct another matrix A

without violating the symmetry property, so,

A =





1 −1 −1
−1 −1 1
−1 1 −1



 .

Similarly, when the first row is (−1, 1,−1) the second and third columns are (1,−1,−1)T and (−1,−1, 1)T

which results in

A =





−1 1 −1
1 −1 −1

−1 −1 1



 .
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Corresponding to the first row (−1,−1, 1) the columns are (−1, 1,−1)T and (1,−1,−1)T . Hence

A =





−1 −1 1
−1 1 −1

1 −1 −1



 .

Note.3.10: Out of the total 64 symmetric matrices of order n = 3t, t = 1 with the numbers ±1 as
its only elements, there exists only eight of the matrices as obtained above whose square results into a
symmetric matrix of the given form.

4 Construction of Hadamard matrices

As per the criterion developed by Manjhi and Kumar [4], the eight matrices constructed in the Theorem
3.9 can be used to construct eight Hadamard matrices of order 4n = 12 each.

Illustration 4.1. Let A =





−1 1 −1
1 −1 −1

−1 −1 1



 be a block matrix in H. This square matrix of order

3 satisfies the property 3A2 = −nJn + 4nIn for n = 3, so, we can construct a Hadamard matrix of
order 4n = 12 as follows:

H =









































1 1 1 −1 1 −1 −1 1 −1 −1 1 −1
1 1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 −1 −1 1 −1 −1 1 −1 −1 1
1 −1 1 1 1 1 −1 1 −1 1 −1 1

−1 1 1 1 1 1 1 −1 −1 −1 1 1
1 1 −1 1 1 1 −1 −1 1 1 1 −1
1 −1 1 1 −1 1 1 1 1 −1 1 −1

−1 1 1 −1 1 1 1 1 1 1 −1 −1
1 1 −1 1 1 −1 1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1 1 1 1 1

−1 1 1 1 −1 −1 −1 1 1 1 1 1
1 1 −1 −1 −1 1 1 1 −1 1 1 1









































5 Conclusion and future scope of the work

When the existence of the matrix A, corresponding to A2 for n = 6, 9 is also established, then it will
be a step forward towards the partial proof of the Hadamard conjecture. For the case n = 6 we may
form 221 symmetric matrices of order n = 6. There are 26 = 64 ways to get the first row (column).
Corresponding to each of these ways 215 matrices can be formed. Inspecting each of these 215 matrices
manually for the special matrix A2 is a challenge. But this is possible with the help of a suitably
developed computer program, which may appear as a sequel to this paper. We can also establish the
existence of the matrix A of order n = 3t, t = 2, 3 with only the elements ±1 as its entries corresponding
to the matrix A2 as defined for n = 3t. But the determination of the matrix A in this case would be
a challenging problem. If we can get such a matrix A then the construction of Hadamard matrices of
orders 24 and 36 is possible.

Acknowledgments The author expresses his thanks the Editor-in-Chief for many modifications in
this paper leading to its better presentation.

References
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