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ABSTRACT 
In this paper, we discussed the solution of the Diophantine equation , where ,  and  are 

non-negative integers. The results showed that this Diophantine equation has exactly three non-negative 

integer solutions. The solutions are  and . 
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1. INTRODUCTION  
 
Diophantine equations are equations in which the solutions are required to be integers. It is a popular 
topic in Number theory and has many vital applications. Many mathematicians have studied the 

Diophantine equation of the form , where  are fixed integers and  are non-negative 

integers (see for instance [1,2,3,4,5]).  
 
In 2020, Sudhanshu, A. and Nidhi, S. [1] studied the Diophantine equation . They proved 

that this Diophantine equation has no non-negative integer solution. 

 
In 2024, Manikandan, K. and Venkatraman, R. [4] showed that the Diophantine equation  

has exactly two non-negative integer solutions. The solutions are  and . 
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2. PRELIMINARIES  
 
Theorem 2.1 

(Catalan’s conjecture) [6] The Diophantine equation , where  and  are integers with 

, has a unique solution . 

 

 
Lemme 2.2  

The Diophantine equation , where  and  are non-negative integers, has a unique non-negative 

integer solution . 

Proof. Let  and  be non-negative integers such that . If , then . It is a contradiction. 

Thus , we obtain , then . According to Theorem 2.1, we have . It 

implies that , then . Thus,  is a solution of the Diophantine equation .      □ 

Lemme 2.3  
The Diophantine equation , where  and  are non-negative integers, has a unique non-

negative integer solution . 

Proof. Let  and  be non-negative integers such that . If , then . It is a 

contradiction. Thus , we obtain , then . According to Theorem 

2.1, we have . It implies that , then . Thus,  is a solution of the 

Diophantine equation  .                   □ 

 
3. RESULTS AND DISCUSSION 
 
Theorem 3.1  
The Diophantine equation , where ,  and  are non-negative integers, has exactly three 

non-negative integer solutions. The solutions are  and . 

Proof. Let ,  and  be non-negative integers such that . We divide the proof into four 

cases as follows: 

Case 1.  and . 

We have , which is a contradiction. 

Case 2.  and . 

We have . By Lemma 2.2, we obtain . 

Case 3.  and . 

We have . By Lemma 2.3, we obtain . 

Case 4.  and . 

Since  and  are odd and even integers, respectively, thus  is an odd integer. 

It implies that  is an odd integer. We obtain . Now, since . Thus 

. We get that  is even. Let . We obtain . Then 

. Thus . There exists a non-negative integer  such that 

 and , where . We obtain  

. Then we get that . Thus . If , we have . 

Then . Thus,  is a solution of equation . If , then 

. Thus . We have . 

According to Theorem 2.1, the equation  has no non-negative integer solution.  □ 
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4. CONCLUSION  
 
In this paper, we showed that the Diophantine equation  has exactly three non-negative 

integer solutions. The solutions are given by  and . We can apply it to 

study the Diophantine equation , where  is a fixed positive integer and  are non-

negative integers. 
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