On the Diophantine Equation $1023^x + 8^y - z^2$

¹Somnuk Srisawat*, ²Amaraporn Bumpendee, and ³Piyada Phetarwut

Author Affiliation:

- ¹Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand, E-mail: somnuk_s@rmutt.ac.th
- ²Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand, E-mail: amaraporn_b@rmutt.ac.th
- ³Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand, E-mail: piyada.arwut@gmail.com
- *Corresponding Author: Somnuk Srisawat, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand, E-mail: somnuk_s@rmutt.ac.th

ABSTRACT

In this paper, we discussed the solution of the Diophantine equation $1023^x + 8^y = z^2$, where x,y and z are non-negative integers. The results showed that this Diophantine equation has exactly three non-negative integer solutions. The solutions are (x,y,z) = (0.1.3), (1.0.32) and (2.4.1025).

Keywords: Diophantine equation, Non-negative integer solutions, Congruence.

How to cite this article: Srisawat S., Bumpendee A. and Phetarwut P. (2025). On the Diophantine Equation $1023^x + 8^y = z^2$. Bulletin of Pure and Applied Sciences-Math & Stat., 44E (2), 67-69.

Received on 22.02.2025, Revised on 03.05.2025, Accepted on 14.07.2025

1. INTRODUCTION

Diophantine equations are equations in which the solutions are required to be integers. It is a popular topic in Number theory and has many vital applications. Many mathematicians have studied the Diophantine equation of the form $a^x + b^y = z^2$, where a, b are fixed integers and x, y, z are non-negative integers (see for instance [1,2,3,4,5]).

In 2020, Sudhanshu, A. and Nidhi, S. [1] studied the Diophantine equation $379^x + 397^y = z^2$. They proved that this Diophantine equation has no non-negative integer solution.

In 2024, Manikandan, K. and Venkatraman, R. [4] showed that the Diophantine equation $8^x + 161^y = z^2$ has exactly two non-negative integer solutions. The solutions are (x, y, z) = (0,1,3) and (1,1,13).

2. PRELIMINARIES

Theorem 2.1

(Catalan's conjecture) [6] The Diophantine equation $a^x - b^y = 1$, where a, b, x and y are integers with $\min\{a, b, x, y\} > 1$, has a unique solution (a, b, x, y) = (3, 2, 2, 3).

Lemme 2.2

The Diophantine equation $1 + 8^y = z^2$, where y and z are non-negative integers, has a unique non-negative integer solution (y, z) = (1,3).

Proof. Let y and z be non-negative integers such that $1+8^y=z^2$. If y=0, then $z^2=2$. It is a contradiction. Thus $y \ge 1$, we obtain $z^2=1+8^y \ge 1+8^2=9$, then $z \ge 3$. According to Theorem 2.1, we have y=1. It implies that $z^2=9$, then z=3. Thus, (y,z)=(1,3) is a solution of the Diophantine equation $1+8^y=z^2$.

Lemme 2.3

The Diophantine equation $1023^x + 1 = z^2$, where x and z are non-negative integers, has a unique non-negative integer solution (x,z) = (1,32).

Proof. Let x and z be non-negative integers such that $1023^x + 1 = z^2$. If x = 0, then $z^2 = 2$. It is a contradiction. Thus $x \ge 1$, we obtain $z^2 = 1023^x + 1 \ge 1023^1 + 1 = 1024$, then $z \ge 32$. According to Theorem 2.1, we have x = 1. It implies that $z^2 = 1024$, then z = 32. Thus, (x, z) = (1,32) is a solution of the Diophantine equation $1023^x + 1 = z^2$.

3. RESULTS AND DISCUSSION

Theorem 3.1

The Diophantine equation $1023^x + 8^y = z^2$, where x, y and z are non-negative integers, has exactly three non-negative integer solutions. The solutions are (x, y, z) = (0,1,3), (1,0,32) and (2,4,1025).

Proof. Let x, y and z be non-negative integers such that $1023^x + 8^y = z^2$. We divide the proof into four cases as follows:

Case 1. x = 0 and y = 0.

We have $z^2 = 2$, which is a contradiction.

Case 2. x = 0 and y > 0.

We have $1 + 8^{y} = x^{2}$. By Lemma 2.2, we obtain (x, y, z) = (0, 1, 3).

Case 3. x > 0 and y = 0.

We have $1023^x + 1 = z^2$. By Lemma 2.3, we obtain (x, y, z) = (1,0,32).

Case 4. x > 0 and y > 0.

Since 1023^x and 8^y are odd and even integers, respectively, thus $z^2 = 1023^x + 8^y$ is an odd integer. It implies that z is an odd integer. We obtain $z^2 \equiv 1 \pmod{4}$. Now, since $8^y \equiv 0 \pmod{4}$. Thus $1023^x \equiv 1 \pmod{4}$. We get that x is even. Let $x = 2k, k \in \mathbb{Z}^+$. We obtain $1023^{2k} + 8^y = z^2$. Then $z^2 - 1023^{2k} = 8^y$. Thus $(z - 1023^k)(z + 1023^k) = 2^{3y}$. There exists a non-negative integer u such that $z - 1023^k = 2^u$ and $z + 1023^k = 2^{2y-u}$, where 3y - u > u, 3y - 2u > 0. We obtain $2(1023^k) = 2^{2y-u} - 2^u = 2^u(2^{3y-2u} - 1)$. Then we get that u = 1. Thus $1023^k = 2^{3y-2} - 1$. If k = 1, we have $2^{3y-2} = 1024$. Then y = 4. Thus, (x,y,z) = (2,4,1025) is a solution of equation $1023^x + 8^y = z^2$. If k > 1, then $2^{3y-2} = 1023^k + 1 > 1023^1 + 1 = 1024 = 2^{10}$. Thus 3y - 2 > 10. We have $\min\{1023, k, 2, 3y - 2\} = 2 > 1$. According to Theorem 2.1, the equation $2^{3y-2} - 1023^k = 1$ has no non-negative integer solution. \square

4. CONCLUSION

In this paper, we showed that the Diophantine equation $1023^x + 8^y = z^2$ has exactly three non-negative integer solutions. The solutions are given by (x,y,z) = (0,1,3), (1,0,32) and (2,4,1025). We can apply it to study the Diophantine equation $1023^x + 2^{ky} = z^2$, where k is a fixed positive integer and x, y, z are non-negative integers.

REFERENCES

- 1. Aggarwal, S., and Sharma, N. (2020). On the non-linear Diophantine equation $379^x + 397^y = z^2$, Open Journal of Mathematical Sciences, 4(1), 397-399.
- 2. Thongnak, S., Chuayjan, W., and Kaewong, T. (2022). On the Exponential Diophantine Equation $2^x + 15^y = z^2$, Annals of Pure and Applied Mathematics, 26(1), 1-5.
- 3. Malavika, N., and Venkatraman, R. (2024). On the Exponential Diophantine Equation $3^x + 121^y = z^2$, International Journal of Mathematics and Computer Science, 19(3), 917–920.
- 4. Manikandan, K., and Venkatraman, R. (2024). On the Exponential Diophantine Equation $8^x + 161^y = z^2$, International Journal of Mathematics and Computer Science, 19(4), 1101-1104.
- 5. Srisawat, S., and Sriprad, W. (2025). On the Diophantine Equation $a^x + b^y = z^2$, where $a \equiv 1 \pmod{3}$ and $b \equiv 1 \pmod{3}$, International Journal of Mathematics and Computer Science, 20(2), 637-639.
- 6. Mihăilescu, P., (2004). Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew Math, pp 167–195.
