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Abstract In this paper the Inverse Gaussian distribution is considered for Bayesian
analysis. The expressions for Bayes estimators of the parameter are derived under squared
error, precautionary entropy, K-loss, and Al-Bayyati’s loss functions by using the quasi
and inverted gamma priors.
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1 Introduction

The Inverse Gaussian (IG) distribution is a long-tailed positively skewed distribution. Its shape is
similar to that of the Normal distribution. This distribution was originally derived as the first passage
of time distribution of Brownian motion with positive drift. In reliability and life-span applications it
is primarily useful when there is substantial skewness. Pandey and Rao [1] estimated the parameter
of IG distribution using Linex loss function. The probability density function of the Inverse Gaussian
distribution (Chhikara and Folks [2]) is given by

f (x; θ) = (2πθ)−1/2 x−3/2e−(x−µ)2/2µ2θx ; x ≥ 0. (1.1)

The joint density function or likelihood function of (1.1) is given by

f (x; θ) = (2π)−n/2 θ−n/2

(
n∏

i=1

x
−3/2
i

)
e
− 1

2µ2θ

∑n
i=1

(xi−µ)2

xi . (1.2)

The log likelihood function is given by

log f (x; θ) = −n

2
log 2π − n

2
log θ + log

(
n∏

i=1

x
−3/2
i

)
− 1

2µ2θ

n∑
i=1

(xi − µ)2

xi
. (1.3)
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Differentiating (1.3) with respect to θ and equating to zero, we get the maximum likelihood estimator
(MLE) of θ which is given as

θ̂ =
1

nµ2

n∑
i=1

(xi − µ)2

xi
. (1.4)

2 The Bayesian method of estimation

The Bayesian inference procedures are developed generally under the squared error loss function

L
(
θ̂, θ
)
=
(
θ̂ − θ

)2
. (2.1)

The Bayes estimator under the above loss function, say, θ̂s is the posterior mean, i.e,

θ̂S = E (θ) . (2.2)

Zellner [3], Basu and Ebrahimi [4] have recognized the inappropriateness of using symmetric loss func-
tion. Norstrom [5] introduced the precautionary loss function, which is given as

L
(
θ̂, θ
)
=

(
θ̂ − θ

)2
θ̂

. (2.3)

The Bayes estimator under the precautionary loss function is denoted by θ̂p and is obtained by solving
the following equation

θ̂P =
[
E
(
θ2
)]1/2

. (2.4)

In many practical situations, it appears to be more realistic to express the loss in terms of the ratio θ̂
θ
.

In this case, Calabria and Pulcini [6] point out that a useful asymmetric loss function is the entropy
loss

L (δ) ∝ [δp − p loge (δ)− 1]

where, δ = θ̂
θ

and whose minimum occurs at θ̂ = θ. Also, the loss function L (δ) is used in Dey et al. [7]
and Dey and Liu [8], in the original form having p = 1. Thus L (δ) can written be as

L (δ) = b [δ − loge (δ)− 1] ; b > 0. (2.5)

The Bayes estimator under entropy loss function is denoted by θ̂E and is obtained by solving the
following equation

θ̂E =

[
E

(
1

θ

)]−1

. (2.6)

Wasan [9] proposed the K-loss function which is given as

L
(
θ̂, θ
)
=

(
θ̂ − θ

)2
θ̂θ

. (2.7)

Under K-loss function the Bayes estimator of θ is denoted by θ̂K and is obtained as

θ̂K =

[
E (θ)

E (1/θ)

] 1
2

. (2.8)

Al-Bayyati [10] introduced a new loss function using Weibull distribution which is given as

L
(
θ̂, θ
)
= θc

(
θ̂ − θ

)2
. (2.9)

Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by θ̂Al and is obtained as

θ̂Al =
E
(
θc+1

)
E (θc)

. (2.10)
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Let us consider two prior distributions of θ to obtain the Bayes estimators.
(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may
use the quasi density as given by

g1 (θ) =
1

θd
; θ > 0, d ≥ 0, (2.11)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.
(ii) Inverted gamma prior: Generally, the inverted gamma density is used as prior distribution of the
parameter θ and is given by

g2 (θ) =
βα

Γ (α)
θ−(α+1)e−β/θ ; θ > 0. (2.12)

3 Posterior density under g1 (θ)

The posterior density of θ under g1 (θ), on using (1.2), is given by

f (θ/x) =
(2π)−n/2 θ−n/2

(∏n
i=1 x

−3/2
i

)
e
− 1

2µ2θ

∑n
i=1

(xi−µ)2

xi θ−d

∫∞
0

(2π)−n/2 θ−n/2
(∏n

i=1 x
−3/2
i

)
e
− 1

2µ2θ

∑n
i=1

(xi−µ)2

xi θ−ddθ

=
θ−(

n
2
+d) e

− 1
2µ2θ

∑n
i=1

(xi−µ)2

xi∫∞
0

θ−(
n
2
+d) e

− 1
2µ2θ

∑n
i=1

(xi−µ)2

xi dθ

=

(
1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+d−1

Γ
(
n
2
+ d− 1

) θ−(
n
2
+d) e

− 1
2µ2θ

∑n
i=1

(xi−µ)2

xi (3.1)

Theorem 3.1. On using (3.1), we have

E (θc) =
Γ
(
n
2
+ d− c− 1

)
Γ
(
n
2
+ d− 1

) (
1

2µ2

n∑
i=1

(xi − µ)2

xi

)c

. (3.2)

Proof. By definition,
E (θc) =

∫
θcf (θ/x) dθ

=

(
1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+d−1

Γ
(
n
2
+ d− 1

) ∫ ∞

0

θ−(
n
2
+d−c) e

− 1
2θµ2

∑n
i=1

(xi−µ)2

xi dθ

=

(
1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+d−1

Γ
(
n
2
+ d− 1

) Γ
(
n
2
+ d− c− 1

)(
1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+d−c−1

=
Γ
(
n
2
+ d− c− 1

)
Γ
(
n
2
+ d− 1

) (
1

2µ2

n∑
i=1

(xi − µ)2

xi

)c

.

From (3.2), for c = 1, we have

E (θ) =

1
2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ d− 2

. (3.3)

From (3.2), for c = 2, we have

E
(
θ2
)
=

(
1

2µ2

∑n
i=1

(xi−µ)2

xi

)2(
n
2
+ d− 2

) (
n
2
+ d− 3

) . (3.4)
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From (3.2), for c = −1, we have

E

(
1

θ

)
=

n
2
+ d− 1

1
2µ2

∑n
i=1

(xi−µ)2

xi

. (3.5)

From (3.2), for c → c+ 1, we have

E
(
θc+1) = Γ

(
n
2
+ d− c− 2

)
Γ
(
n
2
+ d− 1

) (
1

2µ2

n∑
i=1

(xi − µ)2

xi

)c+1

(3.6)

4 Bayes Estimators under g1 (θ)

From (2.2), on using (3.3), the Bayes estimator of θ under squared error loss function is given by

θ̂S =

1
2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ d− 2

(4.1)

From (2.4), on using (3.4), the Bayes estimator of θ under precautionary loss function is given by

θ̂P =
[(n

2
+ d− 2

)(n
2
+ d− 3

)]− 1
2 1

2µ2

n∑
i=1

(xi − µ)2

xi
(4.2)

From (2.6), on using (3.5), the Bayes estimator of θ under entropy loss function is given by

θ̂E =

1
2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ d− 1

(4.3)

From (2.8), on using (3.3) and (3.5), the Bayes estimator of θ under K-loss function is given by

θ̂K =
[(n

2
+ d− 2

)(n
2
+ d− 1

)]− 1
2 1

2µ2

n∑
i=1

(xi − µ)2

xi
(4.4)

From (2.10), on using (3.2) and (3.6), the Bayes estimator of θ under Al-Bayyati’s loss function is given
by

θ̂Al =

1
2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ d− c− 2

. (4.5)

5 Posterior density under g2 (θ)

Under g2 (θ), the posterior density of θ, using (1.2), is obtained as

f (θ/x) =
(2π)−n/2 θ−n/2

(∏n
i=1 x

−3/2
i

)
e
− 1

2µ2θ

∑n
i=1

(xi−µ)2

xi
βα

Γ(α)
θ−(α+1)e−β/θ

∫∞
0

(2π)−n/2 θ−n/2
(∏n

i=1 x
−3/2
i

)
e
− 1

2µ2θ

∑n
i=1

(xi−µ)2

xi
βα

Γ(α)
θ−(α+1)e−β/θdθ

=
θ−(

n
2
+α+1) e

− 1
θ

(
β+ 1

2µ2

∑n
i=1

(xi−µ)2

xi

)

∫∞
0

θ−(
n
2
+α+1) e

− 1
θ

(
β+ 1

2µ2

∑n
i=1

(xi−µ)2

xi

)
dθ

=
θ−(

n
2
+α+1) e

− 1
θ

(
β+ 1

2µ2

∑n
i=1

(xi−µ)2

xi

)

Γ
(
n
2
+ α

)/(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+α

=

(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+α

Γ
(
n
2
+ α

) θ−(
n
2
+α+1) e

− 1
θ

(
β+ 1

2µ2

∑n
i=1

(xi−µ)2

xi

)
(5.1)
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Theorem 5.1. On using (5.1), we have

E (θc) =
Γ
(
n
2
+ α− c

)
Γ
(
n
2
+ α

) (
β +

1

2µ2

n∑
i=1

(xi − µ)2

xi

)c

. (5.2)

Proof. By definition,
E (θc) =

∫
θcf (θ/x) dθ

=

(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+α

Γ
(
n
2
+ α

) ∫ ∞

0

θ−(
n
2
+α+1−c) e

− 1
θ

(
β+ 1

2µ2

∑n
i=1

(xi−µ)2

xi

)
dθ

=

(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+α

Γ
(
n
2
+ α

) Γ
(
n
2
+ α− c

)(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)n
2
+α−c

=
Γ
(
n
2
+ α− c

)
Γ
(
n
2
+ α

) (
β +

1

2µ2

n∑
i=1

(xi − µ)2

xi

)c

.

From (5.2), for c = 1, we have

E (θ) =
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ α− 1

(5.3)

From (5.2), for c = 2, we have

E
(
θ2
)
=

(
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi

)2(
n
2
+ α− 1

) (
n
2
+ α− 2

) (5.4)

From (5.2), for c = −1, we have

E

(
1

θ

)
=

n
2
+ α

β + 1
2µ2

∑n
i=1

(xi−µ)2

xi

(5.5)

From (5.2), for c → c+ 1, we have

E
(
θc+1) = Γ

(
n
2
+ α− c− 1

)
Γ
(
n
2
+ α

) (
β +

1

2µ2

n∑
i=1

(xi − µ)2

xi

)c+1

(5.6)

6 Bayes Estimators under g2 (θ)

From (2.2), on using (5.3), the Bayes estimator of θ under squared error loss function is given by

θ̂S =
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ α− 1

(6.1)

From (2.4), on using (5.4), the Bayes estimator of θ under precautionary loss function is given by

θ̂P =
[(n

2
+ α− 1

)(n
2
+ α− 2

)]− 1
2

(
β +

1

2µ2

n∑
i=1

(xi − µ)2

xi

)
(6.2)

From (2.6), on using (5.5), the Bayes estimator of θ under entropy loss function is given by

θ̂E =
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ α

(6.3)
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From (2.8), on using (5.3) and (5.5), the Bayes estimator of θ under K-loss function is given by

θ̂K =
[(n

2
+ α− 1

)(n
2
+ α

)]− 1
2

(
β +

1

2µ2

n∑
i=1

(xi − µ)2

xi

)
(6.4)

From (2.10), on using (5.2) and (5.6), the Bayes estimator of θ under Al-Bayyati’s loss function is given
by

θ̂Al =
β + 1

2µ2

∑n
i=1

(xi−µ)2

xi
n
2
+ α− c− 1

. (6.5)

7 Conclusion

In this paper, we obtained a number of estimators of parameter of the Inverse Gaussian distribution. In
(1.4) we obtained the maximum likelihood estimator of the parameter, while in (4.1)–(4.5) we obtained
the Bayes estimators under different loss functions using quasi prior. In (6.1)–(6.4) and finally in (6.5)
we obtained the Bayes estimators under different loss functions using the inverted gamma prior. From
the above equations it is clear that the Bayes estimators depend upon the parameters of the prior
distribution.
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