

Bull. Pure Appl. Sci. Sect. E Math. Stat. **39E**(2), 188–192 (2020) e-ISSN:2320-3226, Print ISSN:0970-6577 DOI: 10.5958/2320-3226.2020.00018.1 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 115-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2020

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

Graceful labeling on twig diamond graph with pendant edges *

J. Jeba Jesintha^{1,†}, Subashini K.² and Allu Merin Sabu³

1,3. P.G. Department of Mathematics, Women's Christian College, Chennai, Tamil Nadu, India.

 Department of Mathematics, Jeppiaar Engineering College, Chennai, Tamil Nadu, India.

Research Scholar (Part-Time), P.G. Department of Mathematics, Women's Christian College,
 Affiliated to University of Madras, Chennai, Tamil Nadu, India.

1. E-mail: $_{\bowtie}$ jjesintha_75@yahoo.com

2. E-mail: k.subashinirajan@gmail.com , 3. E-mail: allusabu003@gmail.com

Abstract A graceful labeling of a graph G with q edges is an injection $f:V(G) \to \{0,1,2,\ldots,q\}$ with the property that the resulting edges are also distinct, where an edge incident with the vertices u and v is assigned the label |f(u)-f(v)|. A graph which admits a graceful labeling is called a graceful graph. In this paper, we prove the graceful labeling of a new family of graphs G called a twig diamond graph with pendant edges.

Key words Graceful labeling, star graph, diamond graph.

2020 Mathematics Subject Classification 05C78.

1 Introduction

The most interesting and famous graph labeling method is the graceful labeling of graphs introduced by Rosa [4] in 1967. A graceful labeling of a graph G with q edges is an injection $f: V(G) \to \{0, 1, 2, \ldots, q\}$ with the property that the resulting edges are also distinct, where an edge incident with the vertices u and v is assigned the label |f(u) - f(v)|. A graph which admits a graceful labeling is called a graceful graph. A variety of graphs and families of graphs are known to be graceful for the past five decades. Caterpillars are proved to be graceful by Rosa [4].

Sethuraman and Jeba Jesintha [5,6] proved that all banana trees and extended banana trees are graceful. Hoede and Kuiper [2] showed that wheels $W_n = C_n + K_1$ are graceful. Rosa [4] showed that the n cycle C_n is graceful if and only if n = 0 or $3 \pmod 4$. Kaneria and Makadia [3] proved that a star of a cycle $C_n (n = 0 \pmod 4)$ is graceful. Golomb [7] showed that all complete bipartite graphs are graceful. For an exhaustive survey on graceful graphs we refer to the dynamic survey by Gallian [1].

Graceful labeling is actively being used in many research fields such as communication in sensor networks, designing fault tolerant systems, automatic channel allocation, coding theory problems, X-ray, optimal circuit layout and additive number theory. In this paper, we prove the graceful labeling on twig diamond graph attached with pendant edges.

^{*} Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief). Received May 27, 2019 / Revised October 28, 2020 / Accepted November 11, 2020. Online First Published on December 26, 2020 at https://www.bpasjournals.com/.

[†]Corresponding author J. Jeba Jesintha, E-mail: jjesintha_75@yahoo.com

Fig. 1: The star graphs S_4, S_5, S_6 and S_7 .

Fig. 2: The diamond graph.

2 Preliminary definitions

We now detail the necessary preliminary definitions to be used by us in this paper.

Definition 2.1. The star graph S_n of order n, sometimes simply known as an "n star graph" is a tree on n vertices with one vertex of degree n-1 and the other n-1 vertices each of degree 1 (see Fig. 1).

Definition 2.2. The *diamond graph* is a planar undirected graph with 4 vertices and 5 edges. It consists of a complete graph K_4 minus one edge (see Fig. 2).

Definition 2.3. The *twig diamond graph* is a planar undirected graph with 8 vertices and 11 edges obtained by the attachment of two diamond graphs by an edge (see Fig. 3).

3 The main result

In this section we prove the main result of this paper in Theorem 3.1 below.

Theorem 3.1. The twig diamond graph with pendant edges is graceful.

Proof. Let us consider two diamond graphs D_1 and D_2 . The vertices on the diamond graph D_1 are denoted by u_1, \ldots, u_4 and the vertices on D_2 are denoted by u_5, \ldots, u_8 in the clockwise direction. We connect the two diamond graphs by an edge joining the two vertices u_2 and u_8 and name the resultant graph as twig diamond graph as shown in Fig. 3. Now pendant edges are attached to the remaining vertices of the twig diamond graph, namely, u_1, u_3, u_4 and u_5, u_6, u_7 . The vertices attached at u_1 are denoted by s_1, \ldots, s_n in the clockwise direction and the vertices attached at u_3 are denoted by v_1, \ldots, v_n in the clockwise direction. Similarly, the vertices attached at u_4 are denoted by t_1, \ldots, t_n in the clockwise direction, the vertices attached at u_5 are denoted by u_1, \ldots, u_n in the clockwise

Fig. 3: The twig diamond graph.

direction and the vertices attached at u_6 are denoted by x_1, \ldots, x_n in the clockwise direction. Again, the vertices of the star graph attached at u_7 are denoted by y_1, \ldots, y_n in the clockwise direction as shown in Fig. 4. For reasons of simplicity let us denote the vertices u_1 and u_5 together as u_1^i ; u_2 and u_6 together as u_2^i ; u_3 and u_7 together as u_3^i and u_4 and u_8 together as u_4^i for i=1,2, where, $u_1^1=u_1,u_1^2=u_5,u_2^1=u_2,u_2^2=u_6,u_3^1=u_3,u_3^2=u_7,u_4^1=u_4$ and $u_4^2=u_8$. The resulting graph has p=6n+8 vertices and q=6n+11 edges where n denotes the number of pendant edges as shown in Fig. 4.

The $vertex\ labels$ for the twig diamond graph are as follows:

$$f\left(u_{1}^{i}\right) = (i - 1)(n + 3), \text{ for } 1 \le i \le 2,$$

$$f\left(u_{2}^{i}\right) = (n + 1) + (i - 1)(2n + 8), \text{ for } 1 \le i \le 2,$$

$$f\left(u_{3}^{i}\right) = i(n + 2), \text{ for } 1 \le i \le 2,$$

$$f(u_{4}^{i}) = q - n - (i - 1)(n + 2), \text{ for } 1 \le i \le 2.$$

$$(3.1)$$

The vertex labels for the pendant edges attached at the vertex u_1 are as given below:

$$f(s_j) = q - (j-1), \text{ for } 1 \le j \le n.$$
 (3.2)

The $vertex\ labels$ for the pendant edges attached at the vertex u_3 are given by

$$f(v_j) = q - n + (j - 1), \text{ for } 1 \le j \le n,$$
 (3.3)

and the vertex labels for the pendant edges attached at the vertex u_4 are given by

$$f(t_j) = n - (j-1), \text{ for } 1 \le j \le n.$$
 (3.4)

The vertex labels for the pendant edges attached at the vertex u_5 are given by

$$f(w_j) = \begin{cases} q - (2n+1), \text{ for } j = 1, \\ q - 2n - 2 - (j-1), \text{ for } 2 \le j \le n. \end{cases}$$
 (3.5)

The vertex labels for the pendant edges attached at the vertex u_6 are given by

$$f(x_j) = \begin{cases} (n+4) + j, \text{ for } 1 \le j \le n-1\\ 2j+5, \text{ for } j=n \end{cases}$$
 (3.6)

Fig. 4: The twig diamond graph with pendant edges.

The vertex labels for the pendant edges attached at the vertex u_7 are given by

$$f(y_j) = \begin{cases} \left\lfloor \frac{q}{2} \right\rfloor + 3 - j, \text{ for } 1 \le j \le 2, \\ \left\lfloor \frac{q}{2} \right\rfloor - j + 1, \text{ for } 3 \le j \le n. \end{cases}$$
 (3.7)

From equations (3.1) to (3.7) we see that the vertex labels 0, 1, 2, 3, ..., q are distinct. The *edge labels* for the twig diamond graph are computed as follows:

$$\left| f\left(u_{1}^{i}\right) - f\left(u_{2}^{i}\right) \right| = |4 - i(n+5)|, \text{ for } 1 \le i \le 2,
\left| f\left(u_{2}^{i}\right) - f\left(u_{3}^{i}\right) \right| = |(n+6)i - (n+7)|, \text{ for } 1 \le i \le 2,
\left| f\left(u_{3}^{i}\right) - f\left(u_{4}^{i}\right) \right| = |(2n+4)i - (q+2)|, \text{ for } 1 \le i \le 2,
\left| f\left(u_{4}^{i}\right) - f\left(u_{4}^{i}\right) \right| = |(q+n+5) - i(2n+5)|, \text{ for } 1 \le i \le 2,
\left| f\left(u_{2}^{i}\right) - f\left(u_{4}^{i}\right) \right| = |(3n+10)i - (n+q+9)|, \text{ for } 1 \le i \le 2,
\left| f\left(u_{2}^{i}\right) - f\left(u_{4}^{i}\right) \right| = 4n - 7.$$
(3.8)

The edge labels for the pendant edges are given as below:

$$|f(s_{j}) - f(u_{1})| = q - (j - 1), \text{ for } 1 \le j \le n,$$

$$|f(v_{j}) - f(u_{3})| = q - (2m + 3) - (j - 1), \text{ for } 1 \le j \le n,$$

$$|f(t_{j}) - f(u_{4})| = q - n - j, \text{ for } 1 \le j \le n,$$

$$|f(w_{j}) - f(u_{5})| = \begin{cases} 3j + 7, \text{ for } j = n, \\ q - (3j + 5) - j, \text{ for } 1 \le j \le n - 1, \end{cases}$$

$$|f(x_{j}) - f(u_{6})| = \begin{cases} 2n + 5 - j \text{ for } 1 \le j \le n - 1, \\ j + 4, \text{ for } j = n, \end{cases}$$

$$|f(y_{j}) - f(u_{7})| = \begin{cases} j + 1, \text{ for } 1 \le j \le n - 2, \\ j + 3, \text{ for } n - 1 \le j \le n. \end{cases}$$
(3.9)

From (3.8) and (3.9) it is obvious that the edge labels $1, \dots, q$ are distinct. Thus the twig diamond graph is graceful.

Fig. 5: The twig diamond graph attached with 15 pendant edges.

We illustrate Theorem 3.1 in Fig. 5 for the case when p=98 and q=101.

4 Conclusion

We have shown that the new family of graphs called the twig diamond graph is graceful. Further in our future paper we intend to prove the gracefulness of a new family of graphs obtained by joining pendant edges onto the vertices of the complete graph K_4 and the kite graph.

Acknowledgments The authors are grateful to the referees and the Editor-in-Chief for their comments which have helped them in modifying this paper.

References

- [1] Gallian, J.A. (2017). A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*,
- [2] Hoede, C. and Kuiper, H. (1987). All wheels are graceful, Util. Math., 14, 311-322.
- [3] Kaneria, V.J. and Makadia, H.M. (2012). Journal of Math. Research, 4(1),54-57.
- [4] Rosa, A. (1967). On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, 349–355.
- [5] Sethuraman, G. and Jeba Jesintha, J. (2009). All banana trees are graceful, Adv. Appl. Disc. Math., 4, 53–64.
- [6] Sethuraman, G. and Jeba Jesintha, J. (2009). All extended banana trees are graceful, Proc. International Conf. Math. Comput. Sci., 1, 4–8.
- [7] Golomb, S.W. (1972). How to number a graph, in Graph Theory and Computing, R.C. Read, ed., Academic Press, New York, 23–37.

