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Abstract P. Dienes (see, P. Dienes, The Taylor Series, Oxford, 1931) studied sequence
and sequence space and contributed the notion of convergence closed sequence space.
That is under what circumstances a sequence space will be called convergence closed. In
fact he gave a set of conditions dealing with parametric limit and projective limit under
the umbrella of which a sequence space will be convergence closed under a definition of
convergence in sequence space. Later on he established a few results using the notion
of convergence closed sequence space. Through these established results efforts has been
made by him to exhibit the set of different conditions under which different sequence
spaces can get the title of being convergence closed sequence space. Later on Sharan (see,
L. K. Sharan, Some contributions to the theory of function spaces, Ph.D. Thesis, Magadh
University, Bodh Gaya, Bihar, India, 1986) extended the notion of convergence closed for
function space (or spaces). He investigated that a few function spaces suitably defined
are convergence closed function spaces. In this paper our aim is to extend some results
on convergence closed function space. In the course of the study of convergence closed
function spaces the notions of parametric limit, projective limit, projective convergence
and the dual space of a function space are used, but it is only for function spaces that
we have also used the notion of the section of a function. Efforts are made by us here
to establish a few results which show the fact that there are some function spaces which
are convergence closed, while establishing these results the vital role played by the dual
space of a function space is also discussed.
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1 Introduction

Dienes [5] studied the sequence and sequence space and contributed to the notion of convergence closed
sequence space. That is under what circumstances a sequence space will be called convergence closed.
In fact he gave a set of conditions dealing with parametric limit and projective limit under the umbrella
of which a sequence space will be convergence closed under a definition of convergence in sequence space.
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Later on he established a few results using the notion of convergence closed sequence space. Through
these established results efforts were made by him to exhibit the set of different conditions under which
the different sequence spaces become convergence closed sequence spaces. Later on Sharan [18] extended
the notion of convergence closed for function spaces (or spaces ). He investigated that a few function
spaces suitably defined are convergence closed function spaces. The first author has earlier also studied
the concept of function spaces [19–21]. Some other relevant references in this field are [1–4,6–17].

2 Preliminaries

Now we give below some of the relevant definitions by making the use of which some of the results will
be established in the next section, in order to serve as a ready reference.

Definition 2.1. Sequence Space: A linear space whose elements are sequences is called a sequence
space.

Definition 2.2. Function Space: A linear space whose elements are functions is called a function
space.

In this paper we consider only real functions of real variables. Some definitions of special function
spaces are being given below making the use of which some outcomes are established. The integration
is taken in the Lebesgue sense in the interval [0,∞), which is denoted by us by the symbol E. Some
notations that we use in this paper are listed below:

1. L∞- Space of all bounded functions.
2. Γ- Space of all convergent and bounded unctions. Clearly, Γ < L∞, which means that the space

of all convergent and bounded functions is space of all bounded functions.
3. L1- Space of all integrable functions.
4. L2- Space of all twice integrable functions.
5. ζ- Space of all continuous and bounded functions in E. Clearly, ζ < L∞.
6. ϕ- Space of all functions f such that f(x) is finite.

Definition 2.3. Dual Function Space: If we take α to be a function space then the dual function space
of the function space α is denoted by α∗ and it is defined to be the space of all functions f such that∫
E
|f(x)g(x)|dx <∞ for every function g(x) in α.

Clearly α∗ is also a function space. Also Γ∗ = L1, L∗
∞ = L1, ζ∗ = L1, L∗

1 = L∞.

Definition 2.4. Perfect Space: A function space α is called perfect if its dual of dual is itself.

Clearly, L1 and L∞ are perfect. Since L∗∗
1 = L1 and L∗∗

∞ = L∞.

Definition 2.5. Parametric Convergent(or t-convergent): Let ft(x) be a family of functions of x,
defined ∀t ∈ E, where t is a parameter. If for every given ε > 0, ∃ a positive number T (ε), such that,
∀x ≥ 0, |ft(x)− f1

t (x)| ≤ ε, ∀t, t1 ≥ T (ε), then ft(x) is called parametric convergent [11].

Definition 2.6. Parametric Limit (or t- limit ): If for every given ε> 0, ∃ a positive number T (ε),
such that, ∀x ≥ 0, |ft(x) − ψ(x)| ≤ ε, ∀t ≥ T (ε), then ψ(x) is said to be the parametric limit of ft(x)
and we write the parametric limit of ft(x) as ψ(x).

Here we observe that any function equal to ψ(x) , ∀x ≥ 0 , is also a t-limit of ft(x).
We mean that ψ(x) is a t-limit of ft(x) and all functions equivalent to ψ(x) in E are t-limits of ft(x) .
A function θ is said to be equivalent to ψ(x) in E when θ(x) = ψ(x) almost everywhere in E.

Definition 2.7. Projective Convergence (or αβ-convergence or p-convergence ): Let α and β be two
function spaces such that α∗ ⊇ β and Fg(t) =

∫
E
ft (x) g(x)dx, where ft (x) ∈ α and g(x) ∈ β then

if Fg(t) → a definite finite limit as t → ∞∀g(x) ∈ β then we say that ft (x) is projective convergent
relative to β, and ft (x) is simply called projective convergent in α when β = α∗.
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Thus we can get the necessary and sufficient condition for αβ- convergence of ft (x) is that ∀g ∈ β and
to every ε > 0, there exists a T (ε, g) > 0 such that |

∫
E
g (x) {f t (x)−ft1 (x)}dx| ≤ ε, ∀t, t1 ≥ T (ε, g).

Definition 2.8. Projective Limit ( p- limit or αβ - limit): Let α and β be two function spaces
and ft (x) be family of functions belongs to α. A function ψ is called projective limit of ft (x) in
α relative to β if there exist a function g(x) belonging to β such that

∫
E
|g (x)ψ (x) |dx < ∞, and

limt→∞
∫
E
ft (x) g(x)dx =

∫
E
ψ (x) g(x)dx. Symbolically, we write the projective limit of ft (x) in α

relative to β as the p-limit of ft (x) in α relative to β or the αβ-limit of ft (x), where the function ψ
may lie in α or outside α.

When β = α∗, where α∗ is the dual space of α, then we understand that the projective limit or p-limit
of ft (x) in α relative to α∗ by α-limit of ft (x) and we write α-limit of ft (x) = ψ.

Definition 2.9. Section: If for a fixed ε > 0, ft (x)=
{
ψ (x) , for 0 ≤ x ≤ t,

0 , for x>t
then ft (x) is called a

section of ψ(x). Thus for t > 0, we get the sections ft (x) of any given function ψ(x).

Definition 2.10. Convergence Closed Function Spaces: Let α and β be any two function spaces
such that α∗ ⊇ β and we define Fg(t) =

∫
E
ft (x) g(x)dx where ft (x) is in α and g(x) is in β, if

limt→∞ Fg(t) = definite finite for every g(x) in β then we say that ft (x) is projective convergent (or
p-convergent) relative to β. Suppose α be a function space such that every family of function ft (x)
is p-convergent relative to the function space β and if for any given ε> 0, there corresponds a number
T (ε), independent of x, such that for almost all x ≥ 0, |ft(x)− ψ(x)| ≤ ε for all t ≥ T (ε), then ψ(x) is
called the parametric limit (t-limit ) of ft(x) and we write that the t-limit of ft(x) is ψ(x). If ψ(x) ∈ α
then we say α is a convergence closed function space under the definition of p-convergence. Hence
with a projective convergence, the parametric limit of every convergent family in a function space α
is itself in α. If ψ(x) /∈ α then we say that α is a non convergence closed function space under
definition of p-convergence.

3 Results

In this section we establish some results on convergence closed function spaces. We also note that the
forms of the results for sequence spaces are the same as those for the function spaces.

Theorem 3.1. If α > ϕ (which means that α (which denotes a function space) is a function space
such that it contains the space ϕ of all convergent functions) then α is convergence closed under αβ-
convergence provided that (i) α = L∞, (ii) β ⊆ L∗

∞.

Proof. Let ψ(x) ∈ L∞. Also let for a fixed ε > 0, ft (x) =

{
ψ (x) , for 0 ≤ x ≤ t

0 , for x>t
where t is in E .

Then ft (x) is a section of ψ(x). Now ft (x) = ψ(x) ∈ L∞. Therefore, ft (x) is bounded in [0, t]
and ft (x) = 0 , for every x > t. Thus ft (x) ∈ ϕ which implies that ft(x) is in α as α ⊃ ϕ. Thus
ψ(x) ∈ L∞ =⇒ ψ(x) ∈ α as α = L∞. Let ψ(x) be the parametric limit of ft (x).
Then for each given ε > 0, there exists a positive number T (ε), independent of x, such that ∀x = 0,

ft(x)− ψ(x)=ε ∀t ≥ T (ε). (3.1)

Again let E = [0,∞) and let g(x) ∈ β. Hence∫
E

|g(x)|dx = a definite finite limit. (3.2)

Now for g(x) in β and ε > 0, t ≥ T (ε) from (3.1) and (3.2), we get∫
E

|g(x)ψ(x)|dx =

∫
E

| g (x)| |ψ (x)− ft (x) + ft (x) |dx

6
∫
E

|g (x)| |ψ (x)− ft (x) |dx+

∫
E

|g(x)ft (x) |dx

< εK(g) +

∫
E

|g(x)ft (x) |dx

(3.3)
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where K(g) is a constant depending on g but independent of t. Also ft(x) is in α = L∞ and g is in β.
Hence ∫

E

|g(x)ft (x) |dx = a definite finite limit. (3.4)

Thus in the light of the relations (3.3) and (3.4) we get∫
E

|g (x)ψ (x) |dx = a definite finite limit. (3.5)

Again from (3.1) and (3.2) we have∫
E

ft (x) g(x)dx−
∫
E

ψ (x) g(x)dx≤
∫
E

|g (x) ||f t (x)−ψ (x) |dx< εK(g).

Therefore
lim
t→∞

∫
E

ft (x) g(x)dx =

∫
E

ψ (x) g(x)dx. (3.6)

Thus from (3.5) and (3.6) it follows that ψ(x) is an αβ-limit of ft(x) and also ψ(x) ∈ α. Hence α is
convergence closed. Thus the theorem is established.

Theorem 3.2. Let α > ϕ then α is convergence closed under αβ-convergence provided that (i) α = Γ
(ii) β = Γ∗.

Proof. Let ψ(x) ∈ Γ. Also let ft (x) =
{
ψ (x) , for 0 ≤ x ≤ t

0 , for x > t
, where t ∈ E.

Then ft (x) is a section of ψ(x). Also ft (x) = ψ(x) ∈ Γ ⊆ L∞. But ft(x) = ψ(x) ∈ L∞. Therefore,
ft(x) is bounded in [0, t] and ft(x) = 0, ∀x > t thus ft(x) ∈ ϕ, but by hypothesis α > ϕ. Hence
ft(x) ∈ α, since ψ(x) ∈ Γ. But ψ(x) = ft(x) ∈ α⇒ ψ(x) ∈ α as α = Γ.
Now if ψ(x) be the parametric limit of ft(x). Then for every given ε > 0, ∃ T (ε) > 0 such that ∀x ≥ 0,
we have

|ft(x)− ψ(x)| ≤ ε,∀t ≥ T (ε). (3.7)
Let E = [0,∞) and g(x) ∈ β, but β ⊆ Γ∗, hence g(x) is an integrable function. Hence g(x) ∈ L1. But
then ∫

E

|g(x)|dx is finite. (3.8)

Now for every g (x) ∈ β = Γ∗ , ε > 0 , t ≥ T (ε), we get∫
E

|g(x)ψ(x)|dx =

∫
E

|g (x)| |ψ (x)− ft (x) + ft (x)| dx

6
∫
E

|g (x)| |ψ (x)− ft (x) |dx +

∫
E

|g(x)ft (x) |dx

6 ε. k(g) +

∫
E

|g(x)ft (x) |dx,

(3.9)

which gives, ∫
E

|g (x) ft (x)| dx< ∞, (3.10)

for g(x) ∈ β , ft(x ) ∈ α.
Thus from (3.9) and (3.10) ∫

E

|g(x)ψ(x)|dx < ∞. (3.11)

Also,
|
∫
E

ft (x) g(x)dx−
∫
E

ψ (x) g(x)dx|

6
∫
E

|g (x)| |ft (x)− ψ (x)| dx

6 ε. k(g), since lim
t→∞

∫
E

ft (x) g(x)dx =

∫
E

ψ (x) g(x)dx.

(3.12)
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Thus we find that ψ ∈ α and ψ is an αβ-limit of ft (x), that is under a given definition of αβ-convergence
of ft (x) is in α. Thus α is convergence closed.

Theorem 3.3. Let α ⊃ ϕ then α is convergence closed under αβ-convergence provided β ⊆ L1 .

Proof. Let ψ(x) ∈ ζ. Also let ft (x)=
{
ψ (x) , for 0 ≤ x ≤ t

0 , for x>t
, where t is in E.

Then ft (x) is a section of ψ(x). Also ft (x) = ψ(x) ∈ ζ. Thus ψ(x) ∈ L∞ (as L∞ ⊃ ζ ). Thus
ft (x) = ψ(x) ∈ L∞.
Therefore, f t(x) is bounded in [0, t] and f t(x) = 0 ∀x > t thus ft(x) ∈ ϕ ⊆ α, thus f t(x) is in α, but
ψ(x) = f t(x) ∈ α.
Hence ψ(x) ∈ α. Now if ψ(x) be the parametric limit of f t(x) and f t(x) ∈ α, then for each given ε > 0,
∃ a positive number T (ε), such that ∀x ≥ 0, and for all t ≥ T (ε)

|ft(x)− ψ(x)| 6 ε. (3.13)
Let [0,∞) = E. Also let g(x) ∈ β. Thus due to the definition of β, g(x) is integrable. Thus,∫

E

|g(x)|dx<∞. (3.14)

Now in order to prove the theorem it is sufficient to show that ψ(x) is αβ-limit of ft(x) and ψ(x) is in
α. But to prove that ψ(x) is αβ-limit of ft(x). We have to show that
(i)

∫∞
0

|g(x)ψ(x)|dx<∞, for g(x) is any function of x and is in β and ψ(x) is in α.
(ii) limt→∞

∫
E
ft (x) g(x)dx =

∫
E
ψ (x) g(x)dx, for ft(x) is a section of ψ (x) in α and g(x) ∈ β.

To show (i) we proceed as follows:
since,

∫∞
0

|g(x)ψ(x)|dx for g(x) is in β, ε > 0, t ≥ T (ε)

=

∫
E

|g (x)| |ψ (x)−ft (x)+ft (x) |dx

≤
∫
E

|g (x)| |ψ (x)−ft (x) |dx+

∫
E

|g(x)ft (x) |dx

≤ εk(g) +

∫
E

|g(x)ft (x) |dx,

from (3.12) and (3.13), where k(g) is independent of t running through 0 to ∞.
But

∫
E
|g(x)ft (x) |dx<∞. Hence

∫
E
|g(x)ψ(x)|dx<∞. Also,

|
∫
E

ft (x) g(x)dx−
∫
E

ψ (x) g(x)dx| ≤
∫ ∞

0

|g (x)| |ft (x)−ψ (x) |dx≤ εk(g),

where k(g) depends on g but not on t. Hence limt→∞
∫
E
ft (x) g(x)dx =

∫
E
ψ (x) g(x)dx.

Thus the conditions (i) and (ii) hold good. Hence the function space α is convergence closed under
αβ-convergence (or projective convergence )Thus the theorem is established .

Theorem 3.4. Let α ⊃ ϕ then L∗
1 is convergence closed under L∗

1L
∗∗
1 convergence, provided L1 is

perfect.

Proof. Let ψ(x) ∈ L∗
1. Also let ft (x) =

{
ψ (x) , for 0 ≤ x ≤ t

0 , for x>t
where t is in E = [0,∞).

Then ft (x) is a section of ψ(x). Thus ft (x) = ψ(x) ∈ L∗
1, that is ft (x) = ψ(x) is in the dual space of

the space of the integrable functions. Hence, ft (x) = ψ(x) will be bounded function of x. Therefore,
ft(x) is bounded in [0, t], as well as ft(x) is a section of ψ(x). Hence, ft(x) = 0 for every x > t, thus
ft(x) ∈ ϕ ⊆ α also ft(x) = ψ(x) ∈ α so it is shown that

ψ(x) ∈ α. (3.15)
Let the parametric limit of ft(x) be ψ(x). Then for every given ε > 0, ∃ a positive number T (ε) such
that ∀x ≥ 0,

ft(x)− ψ(x) ≤ ε, ∀t ≤ T (ε). (3.16)
Now for proving the theorem it remains to show that
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(i) the projective limit of ft(x) is ψ(x),
(ii) ψ(x) ∈ α.

In order to prove (i) we observe that ∫
E

|g(x)ψ(x)|dx <∞ (3.17)

for g(x) be any function in L∗∗
1 and ψ(x) is in α since∫

E

|g(x)ψ(x)|dx

=

∫
E

|g (x)| |ψ (x)−ft (x)+ft (x) |dx

≤
∫
E

|g (x)| |ψ (x)−ft (x) |dx+

∫
E

|g(x)ft (x) |dx

≤ εk(g)+

∫
E

|g(x)ft (x) |dx,

from (3.15) and the assumption that g(x) is in L∗∗
1 and L1 is perfect.

Also
∫
E
|g(x)ft (x) |dx<∞ for g(x) ∈ L1 and ft(x) ∈ L∗

1 thus
∫
E
|g(x)ψ(x)|dx<∞.

Also |
∫
E
ft (x) g(x)dx−

∫
E
ψ (x) g(x)dx|≤

∫∞
0

|g (x)| |ft (x)−ψ (x) |dx≤ εk(g(x)).
Thus limt→∞

∫
E
ft (x) g(x)dx =

∫
E
ψ (x) g(x)dx.

Thus ψ(x) is the projective limit of ft(x). Also for (ii) we refer to (3.14). Hence the theorem is
established.

4 Conclusion

Thus the results through which the t-limits are the αβ-limits, which is not necessary for β to be normal,
as the same is essential for the case of the sequence spaces for which fact we refer to previous research
works (?) hence we find that in function spaces. By proving certain results it is shown that some of
the existing function spaces are convergence closed. The important role played by the dual space of a
function space in deducing these three results of section 3 is also visible.
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