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1 Introduction

The Banach contraction principle is the most celebrated fixed point theorem and is generalized in
various directions, (see [1-9]). Bakhtin [1] and Czerwik [3,4] introduced b-metric spaces and proved
the contraction principle in this framework. Many authors have earlier obtained fixed point results for
single-valued functions, in the setting of b-metric spaces, e.g. see [3,4]. Mustafa and Sims [9] introduced
the notion of G-metric spaces.

Definition 1.1. Let X be a non-empty set and G : X x X x X — R™ be a function satisfying the
following conditions:

G(z,y,2) =0if z=y =2,

0<G(z,z,y), forallz,y in X andz # y,

G(z,z,y) <G (z,y,2), forallz,y,z € Xandz # y,

G(z,y,2) = G(z,z,y) = G(y,z,x) = -+ (symmetry in all the three variables),

A e

G (z,y,2) < G(z,a,a) + G(a,y,z), for allz,y, z,a € X. (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X and the pair
(X, G) is called a G-metric space.

Sedghi et al. [5] introduced the concept of S-metric space by modifying G-metric space. The definition
of S-metric space is as follows:
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Definition 1.2. Let X be a nonempty set. An S-metric on X is a function S : X* — [0,00) that
satisfies the following conditions, for each x,y, z,a € X,
1.8 ($7y7 Z) 2 07
2. S(z,vy,
3. S(z,vy,

Then the pair (X, 5) is called an S-metric space.

z)=0if andonlyif z =y = 2,
z) < S(w,x,a)+ S (y,y,a) + S(2,2,a) .

Lemma 1.3. ( [5]) In an S-metric space , we have
S(z,z,y) =S (y,y,z) forall z,ye X .

Sedghi and Dung [6] remarked that every S-metric space is topologically equivalent to a metric space.
Souayah and Mlaiki [2] introduced the concept of Sy-metric space as follows:

Definition 1.4. ( [2]) Let X be a nonempty set. A function S, : X3 — [0,00) is said to be an
Spy—metric if and only if for all z,y, z,t € X, the following conditions hold:

S1 Sy (z,y,2) =0if and only if x =y = z,

S2 Sy (z,z,y) = Sp (y,y,z) forall z,y € X,

S3 Sy (z,y,2) < s[Sh (x,z,t) + Sb (y,y,t) + Se(z, 2,t)], where, s > 1 be a given number .

The pair (X, Sp) is then called an Sp-metric space. See also ( [7, Definition 1.7]). For s = 1, the space
Sp becomes an S-metric space.

Proposition 1.5. ([7]) Let (X, S,) be an Sy—metric space.

1. A sequence {x,} in X converges to x if and only if Sp(Tn,Tn,z) — 0 as n — oo, that is, for
each € > 0 there exists no € N such that for all n > ng, Sp (Tn,Tn,z) < e. It is denoted by
limy— o0 Tn = .

2. A sequence {xy} in X is called a Cauchy sequence if for each € > 0 there exists no € N such that
Sp (T, Tn,Tm) < € for each n,m > ng.

3. The Sy-metric space (X, Sp) is said to be complete if every Cauchy sequence is convergent.

Proposition 1.6. ( [7]). Let (X, Sb),(X,,Sbl) be Sy-metric spaces, and let f : X — X be a
function. Then f is said to be continuous at a point a € X if and only if for every sequence x, in
X, Sp(Tn,Tn,a) = 0 implies that Sp(f(zn), f(zn), f(a)) = 0. A function f is continuous in X if and
only if it is continuous at all a € X.

Mustafa [8] proved the following propositions for the existence of fixed points in G-metric space:

Proposition 1.7. Let (X,G) be a complete G-metric space and let T : X — X be a mapping which
satisfies the following condition for all x,y,z € X,

G(z,y,2),G (z,Tz, Tx) G (y, Ty, Ty),
G(Tz,Ty,Tz) <k max{ G (z,TzTz),G(z,Ty,Ty),G (y,T2,Tz), ,,
G(z,Tz,Tx)

where k € |0, %) Then T has a unique fized point (say, u) and T is G- continuous at u.

Proposition 1.8. Let (X,G) be a complete G-metric space and let T : X — X be a mapping which
satisfies the following condition for all x,y,z € X,

G (2, Ty, Ty) + G (y, Tz, Tx)],
G (T2, Ty, T2) <k maz{ [G (5. T2 T2)+G (5 Ty, Ty, ¢,
G (z,Tz,Tz)+ G (2, Tz, Tz)]

1

where k € [0,5). Then T has a unique fized point (say u) and T is G-continuous at u.
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2 Main results
In this section, we prove Proposition 1.7 and Proposition 1.8 for Sy—metric space.

Theorem 2.1. Let (X,S,) be a complete Sy-metric space and let T : X — X be a mapping which
satisfies the following condition for all x,y,z € X,

Sy ($, Y, Z) ) Sp (T.’]Z, Tz, :17) P Sb (Ty7 Ty7 y) )
Sy (Tz, Ty, Tz) <k max Sy (Tz,Tz,2),5 (Ty,Ty,x),S (Tz,Tz,y), », (2.1)
Sy (Tz, Tx, z)

where k € [0, %) Then T has a unique fized point (say, u) and T is Sy- continuous at u.

Proof. Suppose that T satisfies condition (2.1). Let xo € X be an arbitrary point and define the
sequence {z,} by z, = T" (z0),
z1 =T" (zo) =T (0),

2o = T2 (o) =T{T (x0)} =T (z1),

Ty =T" (x0) = T(xn-1),
then by (2.1), we have
Sb (mnflaxnfly xn) 3 Sb (:L'ny Tn, xnfl) P Sb (xnymn,mnfl) )

St (Tny Tny Tnt1) < kmaxq S (Tnt1, Tnt1, Tn) St (Tns Tny Tn-1) ; Sb (Tnt1, Tntl, Tno1),
Sh (xn7xnaxn)

By using (S2), we have

(2.2)

Sb (wnfl Tn—1 mn) Sb (xn Tn xn+1)
Sp (T, Ty T < k max ; ’ ’ T ’
b( e n+1) - { Sh (xn—hxn—hmn-&-l)

Now, if Sy (Tn, Tn, Tnt1) < kSy (Tn, Tn, Tnt1), then k > 1, which is contradiction as k < % So, (2.2)
becomes
Sp (Tn, Ty Tnt1) < k max{Sy (Tn—1,Tn-1,%n), Sp (Tn-1,Tn-1,Tnt1) (2.3)

But by (S3), we have
S (Tn—1, Tn-1,Tnt+1) < {25y (Tn-1,Tn—-1,2Zn) +Sb (Trnt1, Tnt1,ZTn)}
and by (S2), we have
St (Tn—1,Tn—1, Tnt1) < {25y (Tn—1,Tn-1,%n) +Sb (Tn, Tn, Tnt1)} (2.4)

So, (2.3) becomes

Sb (55n717 Tn—1, xn) 5
St (Tn, Ty Tny1) < k max{ ${Sh (s T Ervs) 4 20 (2n 11, 20)} (2.5)
Hence, it must be the case that
St (Tn, Tny Trnt1) < ks[Sy (Tny Tn,y Tnt1) + 25 (Tn—1, Tn-1,Tn) ] (2.6)
which implies
St (Tn, Tny Tnt1) < 2ks {Sy (z x Zn)}
b nydn,n4+1) > 1—I€S b n—1,4dn—1,4Ln
Let ¢ = 121“55 ,then ¢ < 1
Sp (Tny Tny Tnt1) < ¢S (Tn—1,Tn—1, Tn) (2.7)

*
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and by repeated application of (2.7), we have
Sy (Tn, Tny Tnt1) < q"Sb (T0, To, 1) - (2.8)
Then for all n,m € N,n < m, we have by repeated use of (S3) and (2.8) that
Sy (xn s Tny xm) < 5[231) (x’m Tn, anrl) + Sp (mm7 Ty xnﬁ»l)}
= S[QSb (-Tn, Tn, wn«l»l) + Sb (-Tn+17 Tn+1, xm)]
< 81280 (n, Tn, Tng1) + 8{28 (Tnt1, Tnt1, Tny2) + Sb (T, Tm, Tnt2)}]
=S [2Sb (xny Tn, xn+1) + 25Sp (xn+17 Tn41, mn+2) + 554 (xn+27 Tn42, xm)]
< 5[28 (Tn, Tn, Tnt1) + 286 (Tnt1, Tas1, Tng2) + 57 {280 (Tnt2, Tnt2, Tnts) + Sb (Tm, o, Tnis)}]
< 8 [2Sh (Tn, Tny Trg1) + 285y (Tnt1, Tns1, Tnsz) + 25°Sh (Tnt2, Tnt2, Tnts)
4. +2sm g, (xm_l,xm_l,xm)]
< 2slq" + 5"+ ST+ ST TS, (20, 0, 21) (2.9)
=25q"[1+5q+ (s9)* + - + (s9)" "]y (x0, x0, 71)
< 2sq"[1+sq+ (5q)° 4+ ...ooo--- 156 (zo, zo, 1)

n 1
= 2sq ( q) Sp (2o, To, 1)

Then limp m— o0 St (Tn, Tn, Tm) = 0, since limp, m— oo 259" ( ) S (zo,xo,21) =0 .

1
1—sq
For n,m,l € N (S3) implies that Sy (zn, Tm,x1) < 8[Sy (Tn, Tn, Tm) +Sb (Tm, Tm, Tm) + S (T1, 1, Tm)],
taking limit as n, m,l — 0o, we get Sy (Tn,Tm,x;) — 0. So {zn} is Sp-Cauchy sequence. By complete-

ness of (X, Sy), there exists u € X such that {z,} is Sy-convergent to u. Suppose that 7' (u) # u, then

Sy (U, u, Trn—1), Sy (Tu, Tu,u), Sp (Tu, Tu,u),
Sp (T (u), T (u),zn) < kmax< Sp(Tn,ZTn,Tn-1),Ss (Tu,Tu,u),Sy (Tn,Tn,u), ,
S (Tu, T, Tr—1)

Sy (w, w, Tn—1), Sy (Tu, Tu,u),
Sy (T (u),T (u),zn) < kmax< Sy (Tn,ZTn,Tn-1),5 (Tn,Zn,u), p, (2.10)
Sy (Tu, Tu, Tp—1)

Taking the limit as n — oo and using the fact that the function Sy is continuous in its variables, we
have Sy (Tu, Tu,u) < kSy (Tu, Tu,u), which is a contradiction since 0 < k < % So, u = Tu.
To prove the uniqueness, suppose that v # u is such that Tv = v, then (2.1) implies that

Sy (v,v,u) < k max {Sy (v,v,u),Sp (u,u,v)}, (2.11)

thus Sy (v, v,u) < kSp (v,v,u), which is a contradiction, since, 0 < k < % So, u = v.
To see that T is Sp-continuous at u, let {yn} C X be a sequence such that lim (y,) = u, then

Sb(y’ﬂ7 u, yn), Sb(T (yn) 7T (yn) ) yn),
Sh (T(yn) ,Tu, T(yn)) < k max Se(Tu, Tu, w), Sp(Tu, Tu, yn), . (2.12)

Sp (T(y,,) T (yn) , u)
And we deduce that

Sy (T(y,) »u, T(yn)) < k max{ SS*’IE@{Z Z g:))%b({T(ggj) TT(?(J;Z)?/Z)) } : (2.13)

But (S3) implies that
So(T (Yn) s T (Yn) > Yn) < 8[S6 (Yns Yn,w) + 2S5(Ty,,, Ty, w)]. (2.14)

And (2.13) leads to the following cases,

*
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L Sy (T(y,) uT(Yn)) < qSo(yn, Yn, ),
2. S (T(yn) » Uy T(yn)) kSy (ynyu yn)
3. 5, (T(y,,) »wT(yn)) < kSb(u,u,yn).

<
<

In each case we take the limit as n — oo to see that Sp(T (yn),T (yn),u) — 0 and so, by Proposition
1.5, we have that the sequence{ T'(yn)} is Sp-convergent to u = T'u, therefore, Proposition 1.6 implies
that T" is Sp-continuous at wu.

O

Remark 2.2. If the S,- metric space is bounded (that is, for some M > 0 we have Sy(z,y,2) < M for
all z,y,z € X) then an argument similar to that used above establishes the results for 0 < k < 1.

Corollary 2.3. Let (X,Sp) be a complete Sy-metric space and let T : X — X be a mapping which
satisfies the following condition for some m € N and for all x,y,z € X:

Sb<m7y7£ Sb(Tm(x)vgm(x)7Tf)7
o] SEHERTIEE | o,
Sy (T (), T™ (x) , 2)

where k € [0, %), then T has a unique fized point (say, u), and T™ is Sp-continuous at u.

Proof. From the previous theorem, we have that 7™ has a unique fixed point (say, u), that is,
T (u) = u. But T (u) =T (T™ (uw)) = T™ (u) = T™ (T (u)), so T(u) is another fixed point for T™
and by uniqueness T'u = u. O

Theorem 2.4. Let (X,Sy) be a complete Sy-metric spaces and let T : X — X be a mapping which
satisfies the following condition for all x,y,z € X :

[Sb (Tya Tya (E) + Sb (TJJ, va y)] )
Sy (T (:L‘),T(y)7T(Z)) < k max [Sb (TZ7TZ7y) + Sp (Tvay7 Z)]7 ) (2'16)
[So (Tz,Tz,z) + Sy (T, Tx, 2)],

where k € [0, %), then T' has a unique fized point (say, u), and T is Sp-continuous at u.

Proof. Suppose that T satisfies the condition (2.16), let zop € X be an arbitrary point and define the
sequence {z,} by x, = T"(z0), then by (2.16) we get

[Sb (mnv‘rnwrnfl) + Sy ($n7 Tn, xn—l)] 5
S (Tny Tn, Tnt1) < kmaxq [So (Tnt1, Tn1, Tno1) + S (Tn, Tn, Tn)], ¢, (2.17)
[Sb (xn+17 Tn+1, xnfl) + Sb (xn, In, xn)}

=k max {2Sy (Tn, Tn,Tn-1), S (Tnt1, Tnt1,Tn-1)} .

By using (S2), we have
Sp(Tn, Tny Tnt1) < k max {25 (Tn—1,Tn-1,ZTn) , So (Tn—1, Tn—1,Tn+1)} - (2.18)
By (S3), we have
St (Tn-1,Tn—1,Tnt1) < ${2Ss (Tn-1,Tn-1,2Zn) + Sb (Tnt+1, Tnt1,Zn)},
and from (S2), we have
Sp (Tn—1,Tn-1,Tnt+1) < ${25b (Tn-1,Tn-1,%n) + St (Tn, Tn, Tnt+1)} - (2.19)
Then (2.18) becomes

Sb(xnaxnaer—l) S k max{ 28b (xn—lyxn—lyxn)7 } .

s[28y (Tn-1,Tn-1,Tn) + Sp (Tn, Tn, Tnt1)]

0«‘ AS
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So, it must be the case that
Sb(ﬁ?n, xn? $n+1) S kS{2Sb (‘7"”*1’ xn*h ‘,L"ﬂ) + Sb (CEH, xﬂd xn+1)},

which implies

Sp(Tn, Tn,y Tny1) < 12_14325 {Sb (Tn—1,Tn-1,7n)}.
Let g = 12_’“53 , then ¢ < 1 and
So(Tn, Tny Tnt1) < q{Sp (Tn—1,Tn-1,Zn)}- (2.20)
By the repeated application of (2.20), we have
St (Tny Tny Tnt1) < ¢S (20, 2o, 21) - (2.21)

Then for all n,m € N,n < m, we have by repeated use of (S2),(S3) and (2.21) that
Sy (Tn 5 T, Tm) < 8[28p (Tny Tny Tnt1) + Sb (T, Ty Tng1)]
= S[QSb (xny Tn, mn+1) + Sp ($n+17 Tn+1, CE'Tn)]
< 8[2Sb (Tny Ty Tnt1) + {28 (Tnt1, Tnt1, Tnt2) + Sb (Tm, Tm,y Tnt2)}]
=525 (Tn, Tn, Tnt1) + 285y (Tnt1, Tnt1, Tnt2) + $Sb (Tnt2, Tnt2, Tm)]
< 5[25 (Zn, Tny Tnt1) + 285 (Tnt1, Tot1, Tnt2)
+5? {28 (Tn+2, Tnt2, Tnt3) + S (Tm, T, xn+3)}]
<s [251; (Tn, Tn, Tnt1) + 285y (Trt1, Tnt1, Tnt2) + 2525, (Tn+2, Tnt2, Tnt3)

o+ 28" S, (Tt T, T

S QS[qn + Sqn+1 + S2qn+2 + . + smfnflq'mfl]sb (3707 5130,371)
=25¢"[1+sq+ (s¢)° + -+ (59)™ " "|S (0, z0, 1)
§2sq"[1+sq+(sq)2+... ------ 156 (20, 0, x1)

1
— qu" (?Sq) Sb ({E(),Imxl)

1
1—sq

Then limy, m—oo St (Tn, Tn, Tm) = 0, since, limy m—oo 2sq”( )S (zo,x0,71) = 0 and {z,} is
b
an Sp-Cauchy sequence. By the completeness of (X,Sp), there exists u € X such that {x,} is Sp-

convergent to u. Suppose that T (u) # u, then

[Sy (Tu, Tu, u) + Sy (Tu, Tu, )],
Sy (Tu, Tu, xn) < k max< [S, (xn, zn,u) +Sp (Tu, Tu, xn-1)] , . (2.22)
[Sy (@n,zn,u) +Sp (Tu, Tu, Tn—1)]

Taking the limit as n — oo, and using the fact that the function S, is continuous in its variables, we
get

Sy (Tw, Tu,u) < k max{2Sy, (Tw, Tu,u),Sy(Tu, Tu,u)}. (2.23)
Since, 0 < k < %, this contradiction implies that u = T'u.
To prove the uniqueness, suppose that v # u such that Tv = v, then

[Sb (v,v,v) + S (v,v,0)],
Sy (v,v,u) < k max < [Sy (u,u,v) + Se (v,v,u)], ». (2.24)
[Sb (u,u,v) + Sy (v, v,u)]

So we deduce that Sy (v,v,u) < k[2S; (v,v,u)], which is a contradiction since 0 < k < 1. So, u = v.
To show that T is Si-continuous at u, let {y»} C X be a sequence such that lim {y,} =wuin (X,Ss),
then

[So (Tu, Tu,uw) + Sy (Tu, Tu,u)],
b (Tyn: Tyn, u) +Sp (TU: Tu, yn)] y (- (2-25)
b (Tyn7 Ty’ﬂ7 ’LL) + Sb (Tu7 Tu7 yn)]

Sy (Tu, Tu, Ty,) < k max{ [S
[S

* «
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Thus, (2.25) becomes
Sb (’LL, U, Ty”) S k [Sb (Ty’"«7 Ty”” ’LL) + Sb (u7 U, y’ﬂ)] (226)

But by (S3) we have , Sy (Tyn, Tyn,u) < 25Sy (TYn, TYn,u), therefore, (2.26) implies that
Sb (Ty’ﬂ7 Ty’ﬂ7 u) S ka ('LL, Uu, y”) + 2]€SS}) (Tyn7 Tyn? 'LL)

and we deduce that
Sy (Tyn,Tyn,u) <

1 —2ksSb (w, uy Yn) - (2.27)

Taking the limit of (2.27) as n — oo, we see that Sy (T'yn, Tyn,u) — 0 and so, by Proposition 1.6, we

have Ty, — u = Tu which implies that T is Sp-continuous at .
O

Corollary 2.5. Let (X,Sp) be a complete Sy-metric space and let T : X — X be mapping which
satisfies the following condition for some m € N and for all x,y,z € X :

[So (T™y, T™y,x) + Sp (T, T™z,y)],
Se (T™ (), T™ (y),T™ (2)) < k max [Sp (T2, T"z,y)+ Sy (TTy, T™y, 2)], , (2.28)
[So (T2, T z,z) + Sy (T"x, T™x, 2)],

where, k € [0, %), then T has a unique fized point (say, u), and T™ is Sy-continuous at w.

Proof. The proof follows from the previous theorem and the same argument as is used in the proof
of the Corollary 2.3. O
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