
Bull. Pure Appl. Sci. Sect. E Math. Stat.
39E(2), 176–182 (2020)
e-ISSN:2320-3226, Print ISSN:0970-6577
DOI: 10.5958/2320-3226.2020.00016.8
©Dr. A.K. Sharma, BPAS PUBLICATIONS,
115-RPS- DDA Flat, Mansarover Park,
Shahdara, Delhi-110032, India. 2020

 

Bulletin of Pure and Applied Sciences
Section - E - Mathematics & Statistics

Website : https : //www.bpasjournals.com/

Fixed point results in complete Sb -metric spaces using contractive
mappings ∗

Manju Rani1,† and Nawneet Hooda 2

1. Department of Mathematics, Govt. College for Women,
Murthal, Sonipat, Haryana-131027, India.

2. Department of Mathematics, Deenbandhu Chhotu Ram University of Science And Technology (DCRUST),
Murthal, Haryana-131039, India.

1. E-mail:
 

manjuantil7@gmail.com , 2. E-mail: nawneethooda@gmail.com

Abstract In this paper we prove the existence and uniqueness of fixed points for
mappings satisfying contractive conditions on the complete Sb-metric spaces and show
that these mappings are Sb-continuous at such fixed points.

Key words Fixed point theorems, complete Sb-metric spaces, contractive mappings.

2020 Mathematics Subject Classification 47H10, 54H25, 55M20, 58C30.

1 Introduction

The Banach contraction principle is the most celebrated fixed point theorem and is generalized in
various directions, (see [1–9]). Bakhtin [1] and Czerwik [3, 4] introduced b-metric spaces and proved
the contraction principle in this framework. Many authors have earlier obtained fixed point results for
single-valued functions, in the setting of b-metric spaces, e.g. see [3,4]. Mustafa and Sims [9] introduced
the notion of G-metric spaces.

Definition 1.1. Let X be a non-empty set and G : X ×X ×X → R+ be a function satisfying the
following conditions:

1. G (x, y, z) = 0 if x = y = z,

2. 0 < G (x, x, y) , for allx, y inX andx ̸= y,

3. G (x, x, y) ≤ G (x, y, z) , for allx, y, z ∈ X and z ̸= y,

4. G (x, y, z) = G (x, z, y) = G (y, z, x) = · · · (symmetry in all the three variables),
5. G (x, y, z) ≤ G (x, a, a) +G (a, y, z) , for allx, y, z, a ∈ X. (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X and the pair
(X,G) is called a G-metric space.

Sedghi et al. [5] introduced the concept of S-metric space by modifying G-metric space. The definition
of S-metric space is as follows:
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Definition 1.2. Let X be a nonempty set. An S-metric on X is a function S : X3 → [0,∞) that
satisfies the following conditions, for each x, y, z, a ∈ X,

1. S (x, y, z) ≥ 0,
2. S (x, y, z) = 0 if and only if x = y = z,

3. S (x, y, z) ≤ S (x, x, a) + S (y, y, a) + S (z, z, a) .

Then the pair (X,S) is called an S-metric space.

Lemma 1.3. ( [5]) In an S-metric space , we have

S (x, x, y) = S (y, y, x) for all x, y ∈ X .

Sedghi and Dung [6] remarked that every S-metric space is topologically equivalent to a metric space.
Souayah and Mlaiki [2] introduced the concept of Sb-metric space as follows:

Definition 1.4. ( [2]) Let X be a nonempty set. A function Sb : X3 → [0,∞) is said to be an
Sb–metric if and only if for all x, y, z, t ∈ X, the following conditions hold:
S1 Sb (x, y, z) = 0 if and only if x = y = z,

S2 Sb (x, x, y) = Sb (y, y, x) for all x, y ∈ X,

S3 Sb (x, y, z) ≤ s[Sb (x, x, t) + Sb (y, y, t) + Sb(z, z, t)], where, s ≥ 1 be a given number .
The pair (X,Sb) is then called an Sb-metric space. See also ( [7, Definition 1.7]). For s = 1, the space
Sb becomes an S-metric space.

Proposition 1.5. ( [7]) Let (X,Sb) be an Sb–metric space.

1. A sequence {xn} in X converges to x if and only if Sb(xn, xn, x) → 0 as n → ∞, that is, for
each ε > 0 there exists n0 ∈ N such that for all n ≥ n0, Sb (xn, xn, x) < ε. It is denoted by
limn→∞ xn = x.

2. A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 there exists n0 ∈ N such that
Sb (xn, xn, xm) < ε for each n,m ≥ n0.

3. The Sb-metric space (X,Sb) is said to be complete if every Cauchy sequence is convergent.

Proposition 1.6. ( [7]). Let (X,Sb) , (X
′
, Sb

′
) be Sb-metric spaces, and let f : X → X

′ be a
function. Then f is said to be continuous at a point a ∈ X if and only if for every sequence xn in
X, Sb(xn, xn, a) → 0 implies that Sb(f(xn), f(xn), f(a)) → 0. A function f is continuous in X if and
only if it is continuous at all a ∈ X.

Mustafa [8] proved the following propositions for the existence of fixed points in G-metric space:

Proposition 1.7. Let (X,G) be a complete G-metric space and let T : X → X be a mapping which
satisfies the following condition for all x, y, z ∈ X,

G (Tx, Ty, Tz) ≤ k max


G (x, y, z) , G (x, Tx, Tx) , G (y, Ty, Ty) ,

G (z, Tz, Tz) , G (x, Ty, Ty) , G (y, Tz, Tz) ,
G (z, Tx, Tx)

 ,

where k ∈ [0, 1
2
). Then T has a unique fixed point (say, u) and T is G- continuous at u.

Proposition 1.8. Let (X,G) be a complete G-metric space and let T : X → X be a mapping which
satisfies the following condition for all x, y, z ∈ X,

G (Tx, Ty, Tz) ≤ k max


[G (x, Ty, Ty) +G (y, Tx, Tx)] ,
[G (y, Tz, Tz) +G (z, Ty, Ty)] ,
[G (x, Tz, Tz) +G (z, Tx, Tx)]

 ,

where k ∈ [0, 1
2
). Then T has a unique fixed point (say u) and T is G-continuous at u.
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2 Main results

In this section, we prove Proposition 1.7 and Proposition 1.8 for Sb–metric space.

Theorem 2.1. Let (X,Sb) be a complete Sb-metric space and let T : X → X be a mapping which
satisfies the following condition for all x, y, z ∈ X,

Sb (Tx, Ty, Tz) ≤ k max


Sb (x, y, z) , Sb (Tx, Tx, x) , Sb (Ty, Ty, y) ,

Sb (Tz, Tz, z) , Sb (Ty, Ty, x) , Sb (Tz, Tz, y) ,
Sb (Tx, Tx, z)

 , (2.1)

where k ∈ [0, 1
2
). Then T has a unique fixed point (say, u) and T is Sb- continuous at u.

Proof. Suppose that T satisfies condition (2.1). Let x0 ∈ X be an arbitrary point and define the
sequence {xn} by xn = Tn (x0) ,

x1 = T 1 (x0) = T (x0) ,

x2 = T 2 (x0) = T {T (x0)} = T (x1) ,

...

...
xn = Tn (x0) = T (xn−1),

then by (2.1), we have

Sb (xn, xn, xn+1) ≤ k max


Sb (xn−1, xn−1, xn) , Sb (xn, xn, xn−1) , Sb (xn, xn, xn−1) ,

Sb (xn+1, xn+1, xn) , Sb (xn, xn, xn−1) , Sb (xn+1, xn+1, xn−1) ,
Sb (xn, xn, xn)


By using (S2), we have

Sb (xn, xn, xn+1) ≤ k max

{
Sb (xn−1, xn−1, xn) , Sb (xn, xn, xn+1) ,

Sb (xn−1, xn−1, xn+1)

}
(2.2)

Now, if Sb (xn, xn, xn+1) ≤ kSb (xn, xn, xn+1), then k ≥ 1, which is contradiction as k < 1
2
. So, (2.2)

becomes
Sb (xn, xn, xn+1) ≤ k max{Sb (xn−1, xn−1, xn) , Sb (xn−1, xn−1, xn+1) (2.3)

But by (S3), we have

Sb (xn−1, xn−1, xn+1) ≤ s{2Sb (xn−1, xn−1, xn)+Sb (xn+1, xn+1, xn)}

and by (S2), we have

Sb (xn−1, xn−1, xn+1) ≤ s{2Sb (xn−1, xn−1, xn)+Sb (xn, xn, xn+1)} (2.4)

So, (2.3) becomes

Sb (xn, xn, xn+1) ≤ k max

{
Sb (xn−1, xn−1, xn) ,

s{Sb (xn, xn, xn+1) + 2Sb (xn−1, xn−1, xn)}

}
(2.5)

Hence, it must be the case that

Sb (xn, xn, xn+1) ≤ ks[Sb (xn, xn, xn+1) + 2Sb (xn−1, xn−1, xn) ] (2.6)

which implies
Sb (xn, xn, xn+1) ≤

2ks

1− ks
{Sb (xn−1, xn−1, xn)}

Let q = 2ks
1−ks

, then q < 1
Sb (xn, xn, xn+1) ≤ qSb (xn−1, xn−1, xn) (2.7)
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and by repeated application of (2.7), we have

Sb (xn, xn, xn+1) ≤ qnSb (x0, x0, x1) . (2.8)

Then for all n,m ∈ N,n < m, we have by repeated use of (S3) and (2.8) that

Sb (xn , xn, xm) ≤ s[2Sb (xn, xn, xn+1) + Sb (xm, xm, xn+1)]

= s[2Sb (xn, xn, xn+1) + Sb (xn+1, xn+1, xm)]

≤ s[2Sb (xn, xn, xn+1) + s{2Sb (xn+1, xn+1, xn+2) + Sb (xm, xm, xn+2)}]
= s [2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2) + sSb (xn+2, xn+2, xm)]

≤ s
[
2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2) + s2 {2Sb (xn+2, xn+2, xn+3) + Sb (xm, xm, xn+3)}

]
6 s

[
2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2) + 2s2Sb (xn+2, xn+2, xn+3)

+ . . .+ 2sm−n−1Sb (xm−1, xm−1, xm)
]

≤ 2s[qn + sqn+1 + s2qn+2 + · · ·+ sm−n−1qm−1]Sb (x0, x0, x1) (2.9)
= 2sqn[1 + sq + (sq)2 + · · ·+ (sq)m−1−n]Sb (x0, x0, x1)

≤ 2sqn[1 + sq + (sq)2 + . . . · · · · · · ]Sb (x0, x0, x1)

= 2sqn
(

1

1− sq

)
Sb (x0, x0, x1)

Then limn,m→∞ Sb (xn, xn, xm) = 0, since limn,m→∞ 2sqn
(

1
1−sq

)
S

b
(x0, x0, x1) = 0 .

For n,m, l ∈ N (S3) implies that Sb (xn, xm, xl) ≤ s[Sb (xn, xn, xm)+Sb (xm, xm, xm)+Sb (xl, xl, xm)],
taking limit as n,m, l → ∞, we get Sb (xn, xm, xl) → 0. So {xn} is Sb-Cauchy sequence. By complete-
ness of (X,Sb) , there exists u ∈ X such that {xn} is Sb-convergent to u. Suppose that T (u) ̸= u, then

Sb (T (u) , T (u) , xn) ≤ k max


Sb (u, u, xn−1) , Sb (Tu, Tu, u) , Sb (Tu, Tu, u) ,
Sb (xn, xn, xn−1) , Sb (Tu, Tu, u) , Sb (xn, xn, u) ,

Sb (Tu, Tu, xn−1)

 ,

Sb (T (u) , T (u) , xn) ≤ k max


Sb (u, u, xn−1) , Sb (Tu, Tu, u) ,
Sb (xn, xn, xn−1) , Sb (xn, xn, u) ,

Sb (Tu, Tu, xn−1)

 , (2.10)

Taking the limit as n → ∞ and using the fact that the function Sb is continuous in its variables, we
have Sb (Tu, Tu, u) ≤ kSb (Tu, Tu, u) , which is a contradiction since 0 ≤ k < 1

2
. So, u = Tu.

To prove the uniqueness, suppose that v ̸= u is such that Tv = v, then (2.1) implies that

Sb (v, v, u) ≤ k max {Sb (v, v, u) , Sb (u, u, v)} , (2.11)

thus Sb (v, v, u) ≤ kSb (v, v, u) , which is a contradiction, since, 0 ≤ k < 1
2
. So, u = v.

To see that T is Sb-continuous at u, let {yn} ⊆ X be a sequence such that lim (yn) = u, then

Sb

(
T (yn

)
, Tu, T (yn)) ≤ k max


Sb(yn, u, yn), Sb(T (yn) , T (yn) , yn),

Sb(Tu, Tu, u), Sb(Tu, Tu, yn),
Sb

(
T (yn

)
, T (yn) , u)

 . (2.12)

And we deduce that

Sb

(
T (yn

)
, u, T (yn)) ≤ k max

{
Sb(yn, u, yn), Sb(T (yn) , T (yn) , yn),
Sb (u, u, yn) , Sb

(
T (yn

)
, T (yn) , u)

}
. (2.13)

But (S3) implies that

Sb(T (yn) , T (yn) , yn) ≤ s[Sb (yn, yn, u) + 2Sb(Tyn, T yn, u)]. (2.14)

And (2.13) leads to the following cases,
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1. Sb

(
T (yn

)
, u, T (yn)) ≤ qSb(yn, yn, u),

2. Sb

(
T (yn

)
, u, T (yn)) ≤ kSb(yn, u, yn),

3. Sb

(
T (yn

)
, u, T (yn)) ≤ kSb(u, u, yn).

In each case we take the limit as n → ∞ to see that Sb(T (yn) , T (yn) , u) → 0 and so, by Proposition
1.5, we have that the sequence{ T (yn)} is Sb-convergent to u = Tu, therefore, Proposition 1.6 implies
that T is Sb-continuous at u.

Remark 2.2. If the Sb- metric space is bounded (that is, for some M > 0 we have Sb(x, y, z) ≤ M for
all x, y, z ∈ X) then an argument similar to that used above establishes the results for 0 ≤ k < 1.

Corollary 2.3. Let (X,Sb) be a complete Sb-metric space and let T : X → X be a mapping which
satisfies the following condition for some m ∈ N and for all x, y, z ∈ X:

Sb (T
m (x) , Tm (y) , Tm (z)) ≤ k max


Sb (x, y, z) , Sb (T

m (x) , Tm (x) , x) ,
Sb (T

m (y) , Tm (y) , y) , Sb (T
m (z) , Tm (z) , z) ,

Sb (T
m (y) , Tm (y) , x) , Sb (T

m (z) , Tm (z) , y) ,
Sb (T

m (x) , Tm (x) , z)

 , (2.15)

where k ∈ [0, 1
2

)
, then T has a unique fixed point (say, u), and Tm is Sb-continuous at u.

Proof. From the previous theorem, we have that Tm has a unique fixed point (say, u), that is,
Tm (u) = u. But T (u) = T (Tm (u)) = Tm+1 (u) = Tm (T (u)) , so T (u) is another fixed point for Tm

and by uniqueness Tu = u.

Theorem 2.4. Let (X,Sb) be a complete Sb-metric spaces and let T : X → X be a mapping which
satisfies the following condition for all x, y, z ∈ X :

Sb (T (x) , T (y) , T (z)) ≤ k max


[Sb (Ty, Ty, x) + Sb (Tx, Tx, y)] ,
[Sb (Tz, Tz, y) + Sb (Ty, Ty, z)] ,
[Sb (Tz, Tz, x) + Sb (Tx, Tx, z)] ,

 , (2.16)

where k ∈ [0, 1
2

)
, then T has a unique fixed point (say, u), and T is Sb-continuous at u.

Proof. Suppose that T satisfies the condition (2.16), let x0 ∈ X be an arbitrary point and define the
sequence {xn} by xn = Tn(x0), then by (2.16) we get

Sb(xn, xn, xn+1) ≤ k max


[Sb (xn, xn, xn−1) + Sb (xn, xn, xn−1)] ,

[Sb (xn+1, xn+1, xn−1) + Sb (xn, xn, xn)] ,
[Sb (xn+1, xn+1, xn−1) + Sb (xn, xn, xn)]

 , (2.17)

= k max {2Sb (xn, xn, xn−1) , Sb (xn+1, xn+1, xn−1)} .

By using (S2), we have

Sb(xn, xn, xn+1) ≤ k max {2Sb (xn−1, xn−1, xn) , Sb (xn−1, xn−1, xn+1)} . (2.18)

By (S3), we have

Sb (xn−1, xn−1, xn+1) ≤ s {2Sb (xn−1, xn−1, xn) + Sb (xn+1, xn+1, xn)} ,

and from (S2), we have

Sb (xn−1, xn−1, xn+1) ≤ s {2Sb (xn−1, xn−1, xn) + Sb (xn, xn, xn+1)} . (2.19)

Then (2.18) becomes

Sb(xn, xn, xn+1) ≤ k max

{
2Sb (xn−1, xn−1, xn) ,

s[2Sb (xn−1, xn−1, xn) + Sb (xn, xn, xn+1)]

}
.
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So, it must be the case that

Sb(xn, xn, xn+1) ≤ ks{2Sb (xn−1, xn−1, xn) + Sb (xn, xn, xn+1)},

which implies
Sb(xn, xn, xn+1) ≤

2ks

1− ks
{Sb (xn−1, xn−1, xn)}.

Let q = 2ks
1−ks

, then q < 1 and

Sb(xn, xn, xn+1) ≤ q{Sb (xn−1, xn−1, xn)}. (2.20)

By the repeated application of (2.20), we have

Sb (xn, xn, xn+1) ≤ qnSb (x0, x0, x1) . (2.21)

Then for all n,m ∈ N, n < m, we have by repeated use of (S2),(S3) and (2.21) that

Sb (xn , xn, xm) ≤ s[2Sb (xn, xn, xn+1) + Sb (xm, xm, xn+1)]

= s[2Sb (xn, xn, xn+1) + Sb (xn+1, xn+1, xm)]

≤ s[2Sb (xn, xn, xn+1) + s{2Sb (xn+1, xn+1, xn+2) + Sb (xm, xm, xn+2)}]
= s [2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2) + sSb (xn+2, xn+2, xm)]

6 s [2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2)

+s2 {2Sb (xn+2, xn+2, xn+3) + Sb (xm, xm, xn+3)}
]

6 s
[
2Sb (xn, xn, xn+1) + 2sSb (xn+1, xn+1, xn+2) + 2s2Sb (xn+2, xn+2, xn+3)

+ . . .+ 2sm−n−1Sb (xm−1, xm−1, xm)
]

≤ 2s[qn + sqn+1 + s2qn+2 + · · ·+ sm−n−1qm−1]Sb (x0, x0, x1)

= 2sqn[1 + sq + (sq)2 + · · ·+ (sq)m−1−n]Sb (x0, x0, x1)

≤ 2sqn[1 + sq + (sq)2 + . . . · · · · · · ]Sb (x0, x0, x1)

= 2sqn
(

1

1− sq

)
Sb (x0, x0, x1)

Then limn,m→∞ Sb (xn, xn, xm) = 0, since, limn,m→∞ 2sqn
(

1
1−sq

)
S

b
(x0, x0, x1) = 0 and {xn} is

an Sb-Cauchy sequence. By the completeness of (X,Sb) , there exists u ∈ X such that {xn} is Sb-
convergent to u. Suppose that T (u) ̸= u, then

Sb (Tu, Tu, xn) ≤ k max


[Sb (Tu, Tu, u) + Sb (Tu, Tu, u)] ,
[Sb (xn, xn, u) + Sb (Tu, Tu, xn−1)]
[Sb (xn, xn, u) + Sb (Tu, Tu, xn−1)]

,

 . (2.22)

Taking the limit as n → ∞, and using the fact that the function Sb is continuous in its variables, we
get

Sb (Tu, Tu, u) ≤ k max{2Sb (Tu, Tu, u) , Sb(Tu, Tu, u)}. (2.23)
Since, 0 ≤ k < 1

2
, this contradiction implies that u = Tu.

To prove the uniqueness, suppose that v ̸= u such that Tv = v, then

Sb (v, v, u) ≤ k max


[Sb (v, v, v) + Sb (v, v, v)] ,
[Sb (u, u, v) + Sb (v, v, u)] ,
[Sb (u, u, v) + Sb (v, v, u)]

 . (2.24)

So we deduce that Sb (v, v, u) ≤ k[2Sb (v, v, u)], which is a contradiction since 0 ≤ k < 1
2
. So, u = v.

To show that T is Sb-continuous at u, let {yn} ⊆ X be a sequence such that lim {yn} = u in (X,Sb) ,
then

Sb (Tu, Tu, Tyn) ≤ k max


[Sb (Tu, Tu, u) + Sb (Tu, Tu, u)] ,

[Sb (Tyn, T yn, u) + Sb (Tu, Tu, yn)]
[Sb (Tyn, T yn, u) + Sb (Tu, Tu, yn)]

,

 . (2.25)
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Thus, (2.25) becomes
Sb (u, u, Tyn) ≤ k [Sb (Tyn, Tyn, u) + Sb (u, u, yn)] (2.26)

But by (S3) we have , Sb (Tyn, T yn, u) ≤ 2sSb (Tyn, T yn, u), therefore, (2.26) implies that

Sb (Tyn, T yn, u) ≤ kSb (u, u, yn) + 2ksSb (Tyn, Tyn, u)

and we deduce that
Sb (Tyn, T yn, u) ≤

k

1− 2ks
Sb (u, u, yn) . (2.27)

Taking the limit of (2.27) as n → ∞, we see that Sb (Tyn, T yn, u) → 0 and so, by Proposition 1.6, we
have Tyn → u = Tu which implies that T is Sb-continuous at u.

Corollary 2.5. Let (X,Sb) be a complete Sb-metric space and let T : X → X be mapping which
satisfies the following condition for some m ∈ N and for all x, y, z ∈ X :

Sb (T
m (x) , Tm (y) , Tm (z)) ≤ k max


[Sb (T

my, Tmy, x) + Sb (T
mx, Tmx, y)] ,

[Sb (T
mz, Tmz, y) + Sb (T

my, Tmy, z)] ,
[Sb (T

mz, Tmz, x) + Sb (T
mx, Tmx, z)] ,

 , (2.28)

where, k ∈ [0, 1
2

)
, then T has a unique fixed point (say, u), and Tm is Sb-continuous at u.

Proof. The proof follows from the previous theorem and the same argument as is used in the proof
of the Corollary 2.3.
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