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Abstract A search is made for determining the different solutions in integers to the bi-
nary cubic equation a(x− y)3 = 8x y , a > 0 by employing linear transformations. Some
special relations for the solutions are obtained. The process for getting second order
Ramanujan numbers, sequence of Diophantine triples with suitable property and Dio-3
tuples is also illustrated.
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Nomenclature of symbols

P 5
α = α2(α+1)

2
, tm,s = s [2+(s−1) (m−2)]

2
.

1 Introduction

The third degree Diophantine equations are numerous [1,2] and offer expansion in this subject. In [3–28]
a broad collection of different forms of equations is given. An interesting non-homogeneous third degree
Diophantine equation with two variables a(x − y)3 = 8x y , a > 0 is studied in this paper for finding
its solutions in integers. Some fascinating relations among the solutions are obtained. The process of
obtaining second order Ramanujan numbers, sequence of Diophantine triples with suitable property
and Dio-3 tuples is illustrated.
1.1 Method of analysis
Consider

a (x− y)3 = 8x y , a > 0 (1.1)
Taking

x = c+ k d , y = c− k td, c ̸= k d ̸= 0 (1.2)
in (1.1) , leads to

c2 = k2 d2 (1 + a k d) (1.3)
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which is satisfied by
d = a k s2 − 2 s , c = k (a k s2 − 2 s) (a k s− 1) (1.4)

Substituting (1.4) in (1.2), one has

x = x(a , k , s) = a k2 s (a k s2 − 2 s) ,
y = y(a , k , s) = k (a k s2 − 2 s) (a k s− 2)

(1.5)

Observe that (1.5) satisfies (1.1).

Note 1.1. It is to mention that (1.3) is also satisfied by

d = a k s2 + 2 s , c = k (a k s2 + 2 s) (a k s+ 1)

For this choice , (1.1) is satisfied by

x = x(a , k , s) = k (a k s+ 2) (a k s2 + 2 s) ,
y = y(a , k , s) = a k2 s (a k s2 + 2)

To obtain various relations among the solutions, one has to choose special values to k , s. For illustration,
a few observations from the solutions (1.5) when k = 1 , s = n+ 1 are presented below:
To start with, the solutions to (1.1) when k = 1 , s = n+ 1 in (1.5) are found to be

x = x(a, n) = a (n+ 1)2 (an+ a− 2) ,
y = y(a, n) = (n+ 1) (an+ a− 2)2.

(1.6)

Observations
1 a (n+ 1) [x(a, n)− y(a, n)] = 2x(a, n),

2 3 [a (x(a, n)− y(a, n)) + 2] is a nasty number,
3 a3 (n+ 1)3[(x(a, n))3 − (y(a, n))3] = 2 (x(a, n))2 [4x(a, n)− 3 a2 (n+ 1)2 y(a, n)],

4 (n+ 1) [x(a, n) + n+ 1] is a perfect square,

5 [x(b, u+ v + 1)− y(b, u+ v + 1)]− 2 [x(b, u+ v)− y(b, u+ v)]
+[x(b, u+ v − 1)− y(b, u+ v − 1)] = 4 b,

6
∑N

n=1 y(a, n) = a2 (t3,N )2 + (3 a2 − 4 a)P 4
N + (3 a2 − 8 a+ 4) (t3,N ) + (a− 2)2 N,

7
∑N

n=1(x(a, n)− y(a, n)) = 2 aP 4
N + 4 (a− 1) t3,N + 2 (a− 2)N,

8
∑N

n=1(x(a, n)− y(a, n)) = 4 aP 5
N + (14 a− 12) t3,N + 6 (a− 2)N.

2 Formulation of the second order Ramanujan numbers

From each of the solutions of (1.1) given by (1.6), one can find Ramanujan numbers of order two having
real integers as base numbers.

Illustration 2.1. Consider

x(a, n) = a(n+ 1)2 ( an+ a− 2)
= a (n+ 1)2 ∗ ( an+ a− 2) = (n+ 1 )2 ∗ a (an+ a− 2)
= P ∗Q = R ∗ S say

From the above relation, one may observe that
(P +Q)2 + (R− S)2 = (P −Q)2 + (R+ S)2 = P 2 +Q2 +R2 + S2

(an2 + 3 an+ 2 a− 2)2 + (n2 + (2− a2)n+ 1− a2 + 2 a)2

= (an2 + an+ 2 )2 + (n2 + (2 + a2)n+ 1 + a2 − 2 a)2

= (a2 + 1)n4 + 4 (a2 + 1)n3 + (a4 + 7 a2 + 6)n2 + (2 a4 − 4 a3 + 6 a2 − 4 a+ 4)n
+( a4 − 4 a3 + 6 a2 − 4 a+ 5)

Thus,

(a2+1)n4+4 (a2+1)n3+(a4+7 a2+6)n2+(2 a4−4 a3+6 a2−4 a+4)n +( a4−4 a3+6 a2−4 a+5)

represents a second order Ramanujan number.

 Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics, Vol. 43 E, No. 1, January-June, 2024



Non-homogeneous binary cubic equation a(x− y)3 = 8x y , a > 0 39

3 Formation of sequence of Diophantine triples with the property
D(a2 n + 2 a (a − 1))

Consider
A =

x(a, n)

a(n+ 1)2
= an+ a− 2 , B =

x(a, n+ 1)

a(n+ 2)2
= an+ 2 a− 2

It is observed that
AB + (a2 n+ 2 a (a− 1)) = [an+ 2 (a− 1)]2, a perfect square.
Thus, (A,B) is a Diophantine 2-tuple with propertyD(a2n+ 2 a (a− 1)).
If C is the third tuple, then it is satisfied by the simultaneous equations

AC + a2n+ 2 a (a− 1) = p2 (3.1)

BC + a2n+ 2 a (a− 1) = q2 (3.2)
Eliminating C between (3.1) and (3.2)„ we have

(an+ 2 a− 2) p2 − (an+ a− 2) q2 = a (a2n+ 2 a (a− 1)) (3.3)

Taking
p = X + (an+ a− 2)T , (3.4)
q = X + (an+ 2 a− 2)T, (3.5)

in (3.3) and simplifying , we get

X2 = [a2n2 + (3 a− 4) an + 2 a2 − 6 a+ 4]T 2 + a2n+ 2a(a− 1)

which is satisfied by
T = 1 , X = an+ 2 (a− 1) (3.6)

From (3.4) and (3.1), we get
C = 4 an+ 7 a− 8

Note that (A ,B ,C) is Diophantine triple with propertyD (a2n+2 a (a− 1)). The method for forming
sequences of Diophantine Triples with property D (a2n+ 2 a (a− 1)) is given below:
Let M denote the 3× 3 matrix

M =

 1 0 2
0 0 −1
0 1 2


Then

(A ,B ,C) ∗ M = (an+ a− 2 , 4 an+ 7 a− 8 , 9 an+ 14 a− 18)

Observe that

(an+ a− 2) (4 an+ 7 a− 8) + a2n+ 2 a (a− 1) = (2 an+ 3 a− 4)2

(an+ a− 2) (9 an+ 14 a− 18) + a2n+ 2 a (a− 1) = (3 an+ 4 a− 6)2

(4 an+ 7a− 8) (9 an+ 14 a− 18) + a2n+ 2 a (a− 1) = (6 an+ 10 a− 12)2

Thus, the triple (an+ a− 2 , 4 an+ 7 a− 8 , 9 an+ 14 a− 18) represents Diophantine 3-tuple with the
propertyD(a2n + 2 a (a − 1)). Repeating the above process, sequence of Diophantine triples with the
property D(a2 n+ 2 a (a− 1)) is obtained.
3.1 Dio 3- tuple
Let (A,B) be a Dio 2-tuple with D(−(n+ 1)a2 + a+ 1).
Let A = an+ a− 2 , B = an+ 2 a− 2 be two integers such that AB +A+B +D(−a2 + a+ 1− a2n)
is a perfect square
Consider an integer C not equal to zero satisfying the relations

(an+ a− 1)C + an+ a− 2− (n+ 1)a2 + a+ 1 = p2 (3.7)

(an+ 2a− 1)C + an+ 2a− 2− (n+ 1)a2 + a+ 1 = q2 (3.8)
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Eliminating C from (3.7) and (3.8), we obtain

(an+ 2a− 1)p2 − (an+ a− 1)q2 = (an+ 2a− 1)(an+ 2a− 1− (n+ 1)a2)
−(an+ a− 1)(an+ 3a− 1− (n+ 1)a2)

(3.9)

Using the linear transformations
p = X + (an+ a− 1)T (3.10)
q = X + (an+ 2a− 1)T (3.11)

in (3.9), it leads to the Pell equation

X2 = (A+ 1)(B + 1)T 2 + a− (n+ 1)a2 (3.12)

Let T0 = 1 and X0 = an+a− 1 be the initial solution of (3.12). Thus (3.10) yields α0 = 2(an+a− 1).
And using (3.7), we get C = 4an+ 5a− 5
Hence (A,B,C) = (an+ a− 2 , a n+ 2 a− 2, 4an+ 5a− 5) is the Dio-3 tuple with property D(−a2 +
a+ 1− a2n).
Let E be an integer not equal to zero satisfying the relations

(an+ 2a− 1)E + an+ 3a− 1− (n+ 1)a2 = p2, (3.13)

(4an+ 5a− 4)E + 4an+ 6a− 4− (n+ 1)a2 = q2. (3.14)
Eliminating E from (3.13) and (3.14), we obtain

(4an+ 5a− 4)p2 − (an+ 2a− 1)q2 = −3a(an+ a− 1)2. (3.15)

Using the linear transformations

p = X + (an+ 2a− 1)T, q = X + (4an+ 5a− 4)T (3.16)

in (3.15), it leads to the Pell equation

X2 = (B + 1)(C + 1)T 2 − (a2n+ a2 − a). (3.17)

Let T0 = 1 and X0 = 2an+3a− 2 be the initial solution of (3.17). Thus (3.16) yields p = 3an+5a− 3
and using (3.13), we get E = 9an+ 13a− 10.
Repeating the above process, sequences of Dio-3 tuple with the property D(−a2 + a + 1 − a2n) are
obtained.

4 Conclusion

Different methods are illustrated to find solutions in integers to the third degree non-homogeneous
Diophantine equation having two variables of the form a(x− y)3 = 8x y , a > 0. The researchers may
attempt to find various other methods to find solutions in integers to this problem or attempt other
such problems.
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