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ABSTRACT

An alternative way of solving multi-objective fuzzy non-linear programming problems (MOFNLPP) is
presented. This method reduces the MOENLPP to crisp without using ranking function. The resulting
multi-objective non-linear programming problem (MONLPP) is reduced to a single objective non-linear
programming problem using Zimmerman’s technique. At last the single objective NLPP is solved by
convex separable programming method.
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1. Introduction

To deal with the real life problems having imprecise data, we take the help of fuzzy-linear programming
models. Tanaka et.al [1] first developed the theory of fuzzy programming. Zimmerman [2] provided a
solution of fuzzy linear programming Problems (FLPP). Maleki [4] solved FLPP using ranking functions.
Zhang et.al. [5] evolved a technique to reduce a FLPP into a Multi- objective linear programming problem
having four objective functions. Thakre P.A.et.al. [6] solved similar type of problem using weights. R.B.
Dash and P.D.P. Dash [7] solved fuzzy integer programming problem using Thakre’s Technique.

In more complex situation we accept non-linear models rather than linear ones. Therefore, not much
work has been done in the area of non-linear programming. In 1951 HW Kuhn and A.W. Tucker [8] first
presented a paper on non-linear programming. C.A. Hildreth (1957) [9], P.Wolfe (1959)[10], R. Fletcher
(1971)[11] work on quadratic programming algorithm.
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F.M. Ali [12] first attempted to solve fuzzy non-linear programming problems. Then Nasseri S.H. [13],
P.Raj and Ranjana[14], C. Loganathan and M. Laliltha [15] suggested different methods for solving fuzzy
non-linear programming problems.

PDP Dash and R.B. Dash [16] used ranking function approach to solve MOFNLPP. Recently many
authors, K.P. Gadle and T.S. Pawar [17], D.Rani and T.R. Gulati [18], S.K. Sing and S.P. Yadav [19],
Priyadarshini et.al [20] produced papers based on solution of multi-objective non-linear optimization
problems in Fuzzy environment.

Recently Sk.S.Ali et. al. [21] solved a multi objective fuzzy linear programming problem without using
ranking function.

In this paper, a novel method of solving MOFNLPP is presented. The MOFNLPP is converted to a set of
crisp MOFLPPS without taking the help of ranking function. Each member of the set is solved without
using weighted combination method. Then utilizing the results a non-linear programming problem is
derived using Zimmerman’'s fuzzy programming technique [3]. At last the resulting NLPP is solved
using separable programming technique [22].

2. Preliminaries:

Fuzzy number:

A fuzzy number is a representation of a quantity with arrange of possible values, rather than a single
value. Fuzzy numbers have been introduced by Zadeh [23] and Sakawa [24] in order to deal with

imprecise numerical quantities in a practical way. We define this as follows.

Definition1 A number 8 whose membership functions in general is defined as follows is called a fuzzy
number.

pi(x) a;<x<a,

1 a, <x < a;
~(x) =
Ha(*) wRx) as<x<a,
0 otherwise

where pk:[a;, a,] = [0,1]

ua:[as, as] - [0,1]
are strictly monotonic and continuous functions.

Definition 2 (Trapezoidal Fuzzy Number)

A fuzzy number a@ = (a;, a,, as, a,) having following membership function is called Trapezoidal fuzzy
number.

(J)C_al for x<a
dp-a, JOT a;<x<a,
1 for a;<x<a;
#d(x) ={ =X for az; <x < ay
as—as
0
for X > ay
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Definition 3 (Triangular Fuzzy Number)

A fuzzy number @ = (a,, a,, az) associated with following membership function is called Triangular
fuzzy number.

xX—a
a, —a, for a, <x<a,

_ 1 for X =a,
'ud(x) B fo‘r a, <x<as

a; —a; Otherwise
0

Definition 4 (Optimal Solution)
X* is called a complete optimal solution for (2.1) of 3 x* € X such that
fix) 2 fi(x), i=1,2 .., K, Vx€X

Definition 5 (Pareto-optimal Solution)
An optimal solution X* of a multi-objective decision making is said to be Pareto-optimal solution of any
change in X* cannot improve optimality of some objectives at the cost of other objectives.

It is a compromise optimal solution for the set of objective functions of Multi-objective optimization
problem.

2.1 General Multi-objective Non-linear Programming

The problem to optimize multiple conflicting non-linear objective functions simultaneously under given
constraints is called multi-objective non-linear programming problem (MONLPP). The formulation of
this problem is to

maximize f(x) = (f1(x), f(x), - fi ()"
Subject to

xeX={xeRg;(x)<0,j=1, 2, .., m} (2.1)
where f;(x), f2(x), ..., fr(x) are k distinct non-linear objective functions of decision variables and x is the
set of constrained decision.

3. Fuzzy Non-linear Programming Problem

We consider the following fuzzy non-linear programming problem (FNLPP) in which the cost of the
decision variables as well as the co-efficient matrix of the constraints are fuzzy in nature.

f(x) =(¢,x) = MaxZ = ¥}_, C}-x}ij (3.1)
subject to the constraints
i@y x<b, 1<is<m, x2=0
Where C; = (a, B, vj, 6;), Jj=1 2,..,n
and d;; = (af;, af, aj}) , by = (b}, b7, b})

The above problem can be rewritten as

fG) =max ¥, G«
such that
"y (aly, af, af) ;< (b}, bE b)), 1<i<m, 1<j<n
Using the transformation adopted in the paper Thakre et. al. [6], the problem is further reduced to
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f(x)=maxy G x;xj =max 3 (@ Bj ;) xjaj
Such that
}'1:1 ailj Xj < b;
Je1 (afj — af)x; < bi — b}
n(al+a}) x5 <bl+b}, x2=0

(3.2)

Definition 6 A point x* € X is said to be an optimal solution to a FLPP/FNLPP if (C,x*) > (C,x) for

all x € X.
4. Reduction to Multi-objective Non-linear Programming Problem

The fuzzy objective function of (3.2) breads four crisp objective functions such as

fix) = z ajx;xj

ORI

00 =)y
and  f,(x) = Z 8%

Ultimately the FNLPP (3.2) reduces to a crisp multi-objective linear programming problem as follows:

Max{f,(x), f2(0), fs(x), fa(x)}

subject to the constraints of (3.2),
where f;:R™ = R.

(4.1)

This crsip multi-objective function could have been solved reducing to weighted single objective function

such as
Max {wif; +wyf; + wafs + wyfa}

subject to the constraints of (3.2).
But in this paper, we solve (4.1) using Zimmerman'’s fuzzy technique.

5. Solving Multi-objective Fuzzy Non-linear Programming Problem(MOFNLPP)

A fuzzy multi-objective non-linear programming problem is defined as follows.

Max Z, = 3; (:’:ijrj r=1.2,..q (5.1)
such that
Y@y <b, j=12,...m
Xj >0
Where @, = (al-lj, aizj, a?j, a{*j
6:} = (Crlj'Crzj'ij'ij)
The method of solution:
Step-1 Reduce for each r, Z, to a set of four crisp objective functions.
r=12,..,q
Step-2 Reduce the constraints of (5.1) to the form as described in section-3.
Step-3 Ultimately we get a crisp multi-objective function having 4q objectives subject to
the constraints of the step-2.
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Step-4 The crisp MONLPP is reduced to single objective non-linear programming
problem by Zimmerman’s technique and convex separable programming
technique.

Step-5 The resulting NLPP is solved using convex separable programming method.

6 Numerical Example

Max: 7 (x) = 2x; + 3x, — 2x?

Max: z;(x) = 3x, + 4x, — 5x? 6.1)
such that
Tx, +4x, < %
T, +1x, <2
X1, %, =0
where

2=(221,2225)
3=(21,2.3,3.33.7)

2 =(1.1,1.3,2.3,2.7)

3=(22,253334)
4=(3.1,3.4,4.2,4.7)

5

(4.2,4.4,5.2,5.6)
1=(0.7,09,1)

4 =(3.1,4.0,4.3)

1=(0.6,09,1)
1=(0.5,08,1.2)
4= (32344

2=(17,19,2.1)
Now the problem is converted into a crisp multi-objective non-linear programming problem as follows
Max: zy; = 3x; + 3.3x, — 1.8x%
Max: z,, = 3.2x; + 3.4x, — 1.9x7

Max: z,5 = 3.3x%; + 3.8x, — 2.4x7

Max: zy4 = 3.7x%; + 3.9x, — 2.7x%
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subject to

Solving Max:

Solving Max:

Solving Max:

Solving Max:

Solving Max:

Solving Max:

Solving Max:

Solving Max:

Max: z,; = 3.4x; + 3.3x, — 4.4x}
Max: z,, = 3.6x; + 3.5x, — 4.6x%

Max: z,5 = 3.9x; + 4.3x, — 5.3x%

Max: z,, = 4.6x; + 4.9x, — 5.8x%
1.9x; + 3.8x, < 3.8
0.9x, + 0.8x, < 0.8
41x, +8.6x, <8
1.8x; +1.7x, < 1.8
0.8x; +0.7x, < 0.8
4x; +4.1x, < 4.2

71 = 3x; + 3.3x, — 1.8x7,subject to (6.2) by using convex separable method,we get
x; = 0.982,x, = 0.994,7,, = 4.490

7y, = 3.2x; + 3.4x, — 1.9x{,subject to (6.2) by using convex separable method,we get
xl = O,xz = 0.9302, Z1p = 3.163

zy3 = 3.3x; + 3.8x, — 2.4x%,subject to (6.2) by using convex separable method,we get
x; = 0.987,x, = 0.9302, 2,5 = 4.454

zy4 = 3.7x; + 3.9x, — 2.7x%,subject to (6.2) by using convex separable method,we get
%, = 0.966,x, = 0.9301,z,, = 4.682

Zy; = 3.4%; + 3.3x, — 4.4x%,subject to (6.2) by using convex separable method,we get
x; = 0.0123,x, = 0.9302, z,, = 3.11

Zy, = 3.6x1 + 3.5x, — 4.6x{,subject to (6.2) by using convex separable method,we get
x; = 0.0021,x, = 0.9302, z,, = 3.263

Zy3 = 3.9x; + 4.3x, — 5.3xZ,subject to (6.2) by using convex separable method,we get
xl = 0.999, xz = 0.93, Zy3 = 2.605

7y, = 4.6x1 + 4.9x, — 5.8x{,subject to (6.2) by using convex separable method,we get
x; = 0.987,x, = 0.9433,7,, = 1.011

(6.2)
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Z11

4.490 4.689 4.703 4.906 2.375 2.578 2.993 3.794
Z12

3.534 3.163 3.535 3.628 3.069 3.256 3.999 4.558
Z13

4.277 4.47 4.454 4.649 2.139 2.328 2.686 3.448
Z14

4.288 4.480 4.483 4.682[U]  p.248 2.440 2.821 3.588
Zn

3.106 3.201 3.575 3.673 3.11 3.299 4.047 4.614
Z22

3.076[Ld  B.169 3.541 3.636 3.077 3.263 4.008 4.567
Z23

4.269 4.463 4.435 4.628[U7  p.o74 2.260 2.605 3.363
Z24

4.320 4.514 4.503 4.700 2.182 2.373 2.742 1.011

Utilising U;, L;,i = 1,2, ...,8 from the above table and adopting Zimmerman’s procedure we have,

such that

minA:

3x; + 3.3x, — 0.1125a,;, — 0.45a,, — 1.0125a,5 — 1.8a,, + 2.5311 > 4.906

3.2x, + 3.4x, — 0.1187a,, — 0.475a,, — 1.0687a,; — 1.9a,, + 0.8361 > 3.999

3.3x1 + 3.8x2 - 0.15(111 - 0.6(112 - 1.35(113 - 2.4—(114, + 2.512 2 4’.649

3.7x1 + 3.9x2 - 0.168(111 - 0.675(112 - 1.5187(113 - 2.7(114 + 2.4341 2 4.682

3.4x1 + 3.3x2 - 0.275(111 - 1.15(112 - 2.475(113 - 4.4(114 + 1.508}- 2 4’.614

3.6x1 + 3.5x2 - 0.2875(111 - 1.15(112 - 2.5875(113 - 4’.6(114 + 1.4911 2 4.567

3.9x, + 44.3x, — 0.3312a,, — 0.1325a,, — 2.9812a,5 — 5.3a,, + 2.551 > 4.628

4.6x, + 4.9x, — 0.3625a,, — 1.45a,, — 3.2625a,5 — 5.8a,, + 3.6891 > 4.7

1.9x; + 3.8x, < 3.8
0.9x; +0.8x, 0.8
4.1x, +8.6x, <8

1.8x, + 1.7x, < 1.8
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0.8x, + 0.7x, < 0.8
4x; +4.1x, < 4.2
Aot ay; +a;; a3 +a;, =1
X1 + Xy =0
Now solving by two-phase method the optimal solution of the above problem is
x; = 0.1076
x; = 0.8789
Now the optimal values of the objective function of MOFNLPP (??) we get
z; = 2x; + 3x; — 2x;2
= (2,2.1,2.2,2.5)(0.1076) + (2.1,2.3,3.3,3.7)(0.8789) — (1.1,1.3,2.3,2.7)(0.1076)?
= (0.2152,0.2259,0.2367,0.269) + (1.8456,2.0214,2.9003,3.2519) — (0.0127,0.0150,0.0266,0.0312)
= (2.0481,2.2323,3.1104,3.4897)
z; = 3x; + 4x} — 5x;2
= (2.2,2.5,3.3,3.4)(0.1076) + (3.1,3.4,4.2,4.7)(0.8789) — (4.2,4.4,5.2,5.6)(0.1076)?

= (0.2367,0.269,0.3550,0.3658) + (2.7245,2.9882,3.6913,4.1308) — (0.0486,0.0509,0.0602,0.0648)

= (2.9126,3.2063,3.9861,4.4318)

x<a
ha A<Xx<Dh

prz(x) =41 b<x=<c
4* c<x<d

x>d

0 e X < 20481

o1sas  2.0481 < x < 2.2323
Uz () =11 2.2323 < x < 3.1104
34897-% 31104 < x < 3.4897
ko"'”” x > 3.48497

0 o X <2.9126

02937 2.9126 < x < 3.2063
Uz () =41 3.2063 < x < 3.9861
44318-x 39861 < x < 4.4318
00'4457 x > 4.4318

7. Conclusion

An alternative way of solving MOFNLPP is presented in this paper. A numerical verification shows the
results are very close to those obtained by other methods using ranking function [16].This method may be
adopted for MOFNLPP in intuitionistic fuzzy environment.
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