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ABSTRACT 

After the introduction of intuitionistic fuzzy set
devoted in the study of different aspects
to introduce the notion of intuitionistic nil radicals of intuitionistic fuzzy 
investigated some of their properties. 
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1.  Introduction 
 
On a non-empty set �, Zadeh in his classic paper 
give the degree of membership of an element in a given set. It’s generalization called intuitionistic fuzzy set was 
introduced by Atanassov K.T in [2] , which give both the degree of membership and the degree of non 
of an element to the given set. Several researches have been made in 
fuzzy ideals of rings.[4-6]. A lot of researchers extend 
modfications [7-15]. In particular the author of [13
hemirings and discussed their properties. In this paper, we introduced the notion of 
intuitionistic fuzzy ideal of hemirings and studied so
 
 
2. Preliminaries 
 
Definition 2.1: A system (R, + ∙	) where R is non empty set and 
hemiring if: 
(i).(	R	, +)  is commutative semi group 
(ii). (R	,∙	)is a semigoup. 
(iii). a	(b	 + 	c) = ab	 + 	ac and (	a + 	b
  
A hemiring	(R, + ∙	) is said to be commutative if
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intuitionistic fuzzy ideal; Intuitionistic nil radical; Intuitionistic intrinsic product; 

, Zadeh in his classic paper [1] produced a function � ∶ �	 → [0,1] , called fuzzy set , which 
give the degree of membership of an element in a given set. It’s generalization called intuitionistic fuzzy set was 

, which give both the degree of membership and the degree of non 
of an element to the given set. Several researches have been made in the nil radicals of fuzzy ideals and intuitionistic 

]. A lot of researchers extend many concepts in ring theory to hemiring theory with some 
In particular the author of [13] introduced the concept of nil radicals of fuzzy ideals of 
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and studied some of their related properties. 

where R is non empty set and +	���	 ∙ are binary operations on R is called a 

 with zero element 0. 

b)c	 = 	ac	 + bcand 0∙ � = �. 0 for all a, b, c, and, x	 ∈ R. 
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Throughout this paper we assume Rto be a commutative hemiringwith unity and L stands for a complete heyting 
algebra. 
 
Definition 2.2: A non-empty subsetIofR, closed under addition of R is such that ; for all � ∈ �	and � ∈ � we have 
�� ∈ � is called left ideal of R .  
 
Definition 2.3:  A left ideal I of R satisfying the property : if �, �	 ∈ �	���	� ∈ �,� + � = �	implies	� ∈ � is called 
left k- ideal. 
 
Analogous definitions can be given for right cases. 
 
Definition 2.4:  If I is an ideal of  � , then its radical (also called 

nil radical) is defined as  √� = {	�	 ∈ � ∶ 	�� ∈ �, for some integer n >0} 
 
Definition 2.5: An L-fuzzy set � of non – empty arbitrary set �is a mapping	� ∶ 	X	L. 
The intersection and union of  two fuzzy sets can be defined as follow :  
(i). �	 ∩ �(�) = min	{�(�), �(�)} .       
(ii). �	 ∪ �(�) = max	{�(�), �(�)} 
 
Definition 2.6: A fuzzy set	� ∶ 	X	L	 satisfying the conditions: 
 (i).�(� + �) ≥ �(�) 	�(y) 
 (ii).�(��) > �(�)for	�	���	�	in R is called fuzzy left ideal. 
 
Similarly right case can be defined.  
 
Definition 2.7: Let	� be a fuzzy ideal of. The fuzzy nil radical √� of � is the fuzzy subset of � 
defined by :  √�(�) = sup

1n

�(��) , Or equivalently can be written as  

��(�) = 	� �(��)

���

 

Definition 2.8: An object of the form ���, ��(�)	, 
�
(�)� : �	 ∈ �� 

Where��	: ��	���	
�
: � � 

define the degree of membership and non-membership of the element x of R ,respectively and for each	� ∈ � , 

satisfaying	, 0 ≤ ��(�) + 
�
(�) ≤ 1 is called intuitionistic fuzzy set (for short IFS) A in R. 

 

For simplicity sake ,the symbol � =   AA
, is used to denote the IFS A in R . 

Clearly, for every fuzzy set μ , we can have an IFS :	� = {(�, �(�), 1 − �(�)) ∶ � ∈ �}. 

For every two intuitionistic fuzzy sets,	� =   AA
,

, B =( ��	, �
),  

We have the following definitions: 
 

(a) �  B ��(�) ≤ ��(�)	���
�
(�) ≥ 

�
(�)	∀	∈ �	.		 

(b) � = �	 BA 	���	�	�. 

(c) � ∩ �	 = (�� ∩ ��, 
�

∩ 
�
)	

(d) � ∪ �	 = (�� ∪ ��, 
�

∪ 
�
)	

 

Definition 2.9: An intuitionistic fuzzy set A =(��	, �
) is said to be an intuitionistic fuzzy left ideal of R if : 

(i).			��(�	 + �) ≥ ��(�) ��(�) 
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(ii). 
�
(�	 + �) ≤ 

�
(�) 

�
(�) 

(iii). ��(�	�) ≥ 	��(�) 

(iv). 
�
(��) ≤ 

�
(�)	∀	�, �	 ∈ � . 

 
Similar definition can be given for the right case. 
  
An intuitionistic fuzzy ideal of R is one which is both intuitionistic fuzzy right and left ideal. 
 
3. Intuitionistic nil radicals of an intuitionistic fuzzy ideal of hemirings 

Definition 3.1:  Let 	� =   AA
,  be an intuitionistic fuzzy ideals of 	� . The intuitionistic nil radicals of     

� =   AA
, � =   AA

,  , denoted by √� =   AA
, 	,	is defined by  

 

	�√�(�) = � ��

���

(��)	,														
√�

(�) = � 
�
(��)

��

 

for all � ∈ � and for some � ∈ � . 
 
Or equivalently, the above definition can be written as  

	�√�(�) = 	sup
1n

��(��)	,										
√�

(�) = 	
inf

1n


�
(��) 

for all � ∈ � and for some � ∈ �. 
 
In the sequel, we will use both interchangeably.  
The following lemma is the direct consequence of Definition 3.1 and can easily be shown. 

Lemma 3.2:.For all intuitionistic fuzzy ideals � =   AA
, , &� = (��	, �

)	of  �, we have   

(i) � A  

(ii) ��		�������	√�√� 

(iii) �√� = √� 
 

Theorem 3.3: √� = (	�√�, 
√�

	)is an intuitionistic fuzzy ideal of  . 

 
Proof: First let us show that  

�√�(� + �) ≥ 	����	�√�(�)	, �√�(�)�&
√�

(� + �) ≤ 	max �
√�

(�), 
√�

(�)� 

 
Let	�, �	 ∈ � . Then we have the following . 

����	�√�(�)	, �√�(�)� = ��� �sup
1n

��(��)	, sup
1n

��(��)� 

																																								= 	 min{(supsup
11  nm

��(��), ��(��)}……….(1) 

max �
√�

(�), 
√�

(�)� = max �inf
1m


�
(��),

inf
1n


�
(��)� 

																																																							= max{infinf(
11  nm


�
(��), 

�
(��)}………..(2) 

As �	is commutative ,for any two positive integers m and n ,each term in the binomial expansion of (� + �)���   
contains either ��	��		�� as a factor . 
 



On Intuitionistic Nil Radicals of an Intuitionistic Fuzzy Ideals of Hemirings 

Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics/Vol.41E, No.2 /Jul-Dec 2022     139 

Thus ,(� + �)��� = ��� + ���, for some t , r ∈ �. Then we have  
 

min	{��(��), ��(��)} ≤ min{���{��(��), ��(�)} , ���{��(��), ��(�)}}
≤ min{��(���	), ��(���)}	(��	��	��	��������������	�����	�����) 

																														≤ ��(��� + ���) = ��(� + �)��� ≤
sup

1k

��(� + �)� = �√�(� + �) ……….(3) 

and 

��� �
�
(��), 

�
(��)�

≥ max	{min �
�
(��), 

�
(�)� , min �

�
(��), 

�
(�)�}

≥ max	 �
�
(���), 

�
(���)�	((��	��	��	��������������	�����	�����) 

																																			≥ 
�
(��� + ���) = 	 

�
(� + �)��� ≥ inf

1k


�
((� + �)�) 

																																																									= 
√�

(� + �).   ………………… (4) 

 
Hence, from (1) & (2) we have that  
 

�√�(� + �) ≥ 	����	�√�(�)	, �√�(�)�&
√�

(� + �) ≤ 	max �
√�

(�), 
√�

(�)� 

 
Secondly to show that: 
 

�√�(��) ≥ 	����	�√�(�)	, �√�(�)�&
√�

(��) ≤ 	min �
√�

(�), 
√�

(�)� 

 
 

����	�√�(�)	, �√�(�)� = ��� �sup
n

��(��), sup
n

��(��)� = sup
n

max	{��(��), ��(��)} ..(5) 

min �
√�

(�), 
√�

(�)� = min �inf
n


�
(��),

inf
n


�
(��)� = min{inf

n


�
(��), 

�
(��)} ..(6) 

 
Now for any positive integer n, we have  
 

max	{	��(��)	, 	��(��)} ≤ ��(����) = ��(��)� ≤ sup
1k

��(��)� = �√�(��) 

and 

��� �
�
(��), 

�
(��)� ≥ 

�
(����) = 

�
(��)� 	≥ inf

1k


�
(��)� = 

√�
(��) 

 
Thus , from  (5)&  (6), we have that  

�√�(��) ≥ 	����	�√�(�)		, �√�(�)�&
√�

(��) ≤ 	min �
√�

(�), 
√�

(�)� 

Hence √� = (�√�, 
√�

	)  is an intuitionistic fuzzy ideal of	�. 

Definition 3.4: Let � =   AA
, & � = (��	, �

)   be intuitionistic fuzzy subsets in ahemiring R (not 

necessarily commutative).The intuitionistic intrinsic product of  A =(��	, �
),& B =( ��	, �

)  is defined to be the 

intuitionisticfuzzy set � ∗ � = (��∗�	,  �∗�
) in R given by 

��∗�	(�) 			= 					� � � ��(��) ��(��)														, ��	� = � ����

�

���

		 , � ∈ �		,									

�����

0																																																																				��ℎ������											

� 
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
�∗�

(�) 			= 					� � � 
�
(��)  �

(��)																	, ��	� = � ����

�

���

		 , � ∈ �

�����

1																																																													��ℎ������																				

� 

 
  Clearly the product � ∗ � is commutative if � is a commutative hemiring. 
 

Theorem 3.5: If	� =   AA
, ,&� = (��	, �

)  are  intuitionistic fuzzyideals of � , then their product � ∗ � =

(��∗�	,  �∗�
) is also an intuitionistic fuzzy ideal of �. 

 
Proof: let �, �	 ∈ �  , then  
We want to show   

(�)	��∗�	(� + �) ≥ ���	{��∗�	(�), ��∗�	(�)}					���			
�∗�

(� + �) ≤ 		���	{
�∗�

(�), 
�∗�

(�)} 

(ii)	��∗�	(��) ≥ ��∗�(�)  ��∗�	(��) ≥ ��∗�(�)  and
�∗�

(��) ≤ 
�∗�

(�)  
�∗�

(��) ≤ 
�∗�

(�)   

To show the first assertion: 

��∗�	(� + �) = � � � ��(��) ��(��) 				 ∶ 		� + � = � ����

�

���

	 , � ∈ �

������

�

≥ � �  � ��(��) ��(��)    � ��(��) ��(��)  				 ∶ 		� = � ����

�

���

	 , �

����������

= � ����

�

���

				 , �, � ∈ �� = � � � ��(��) ��(��) ∶ � = � ����

�

��������

		 ∈ ��   

� � � ��(��) ��(��) ∶ � = � ����

�

��������

� ∈ �� = ��∗�	(�) ��∗�	(�) 

and 


�∗�

(� + �) = 	� � � 
�
(��)  �

(��)

�����

∶ � + � = � ����

�

���

	 , � ∈ ��

≤ � �  � 
�
(��)

�����

 
�
(��)    � 

�
(��)  �

(��)  		 ∶ 	� = � ����

�

���

		,			�

�����

= � ����

�

���

		 , �, � ∈ ��

= � � � 
�
(��)  �

(��) ∶ 		� = � ����

�

���

	 , � ∈ �

�����

�  � � � 
�
(��)  �

(��) ∶ 		�

�����

= � ����

�

���

	 , � ∈ �� = 
�∗�

(�) 
�∗�

(�) 

 

Hence,��∗�	(� + �) ≥ ���	{��∗�	(�), ��∗�	(�)}					���			
�∗�

(� + �) ≤ 		���	{
�∗�

(�), 
�∗�

(�)} 

 
To show the second assertion: 
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��∗�(�) = � � � ��(��) ��(��) ∶ 	� = � ����

�

���

	 , � ∈ �

�����

� 	

≤ 	� � � ��(���) ��(��) ∶ 	�� = �(���)��

�

���

	 , � ∈ �

�����

�

≤ � � � ��(��) ��(��) ∶ 	�� = � ����

�

���

	 , � ∈ �

�����

� = ��∗�	(��) 

Similarly  

��∗�(�) = � � � ��(��) ��(��) ∶ 	� = � ����

�

���

	 , � ∈ �

�����

� 	

≤ 	� � � ��(��) ��(���) ∶ 	�� = � ��(���)

�

���

	 , � ∈ �

�����

�

≤ � � � ��(��) ��(��) ∶ 	�� = � ����

�

���

	 , � ∈ �

�����

� = ��∗�	(��) 

and 


�∗�

(�) = � � � 
�
(��)  �

(��) ∶ � = � ����			, � ∈ �

�

��������

�

≥ � � � 
�
(���) 

�
(��) ∶ �� = �(���)��		, � ∈ �

�

��������

�

≥ � � � 
�
(��)  �

(��) ∶ �� = �(��)��		, � ∈ �

�

��������

� = 
�∗�

(��) 

 
Similarly  


�∗�

(�) = � � � 
�
(��)  �

(��) ∶ � = � ����			, � ∈ �

�

��������

�

≥ � � � 
�
(��)  �

(���) ∶ �� = � ��(���)		, � ∈ �

�

��������

�

≥ � � � 
�
(��)  �

(��) ∶ �� = �(��)��		, � ∈ �

�

��������

� = 
�∗�

(��) 

 

Therefore,   ��∗�	(��) ≥ ��∗�(�)  ��∗�	(��) ≥ ��∗�(�)   

and
�∗�

(��) ≤ 
�∗�

(�)  
�∗�

(��) ≤ 
�∗�

(�)   

 

Hence  ,	� ∗ � = (��∗�	,  �∗�
) is an intuitionistic fuzzy ideal of �. 

 

Theorem 3.6: If�	 =   AA
, ,&� = (��	, �

)are intuitionistic fuzzy ideals of � , then√� ∗ � = √� ∩ � =

√� ∩ √� . 
 

Claim 1√� ∗ � = √� ∩ � 
 

 Let � ∈ � and let � = ∑ ����	
�
� = ���� + ���� + ⋯ ����    where ����  0 are in � 

Then  
���{��(��), ��(��)} 	≤ ��(��) ≤ ��(����)and 
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								max		{
�
(��)  �

(��)} 	≥ 
�
(��) ≥ 

�
(����)		, 1 ≤ � ≤ � 

Then we have, 
 

min{��(��), … , ��(��), ��(��), … , ��(��)} ≤ min{��(����), … , ��(����)} 
≤ ��(���� + ⋯ + ����) = ��(�)………………………….(7) 
 
and 

max �
�
(��), … , 

�
(��),

,


�
(��), … ,

,


�
(��)� ≥ max �

�
(����), … 

�
(����)� ≥ 

�
(���� + ⋯ +

����) = 
�
(�)    …………………………………….(8) 

 
Taking the supremum and infimum respectively, overall expressions, we get  
 

��∗�	(�) ≤ ��(�)   , and  
�∗�

(�) ≥ 
�
(�)    Similarly    ��∗�	(�) ≤ ��(�)   , and  

�∗�
(�) ≥ 

�
(�) 

 

 ��∗�	(�) ≤ min{��(�), ��(�)}and ,
�∗�

(�) ≥ max	{
�
(�)

,


�
(�)}  for all � ∈ � . 

 � ∗ �	� ∩ �√� ∗ �√� ∩ �		( by lemma 3.2 ii)      ………..(8) 

 
Now,let� ∈ � . Then we have that  
�√�∗�(�) = sup

k

��∗�	(�
�) ≥ ��∗�	(�

��) ≥ min{��(��), ��(��)} = ��∩�(��)and 


√�∗�

(�) = inf
k


�∗�

(��) ≤ 
�∗�

(���) ≤ max �
�
(��), 

�
(��)� = 

�∩�
(��),for all � ≥ 1. 

 
Taking the supremum and infimum , respectively over all � ≥ 1, we get  
 

�√�∩�(�) ≤ �√�∗�(�)and
√�∩�

(�) ≥ 
√�∗�

(�) 

 

√� ∩ �√� ∗ �        ………………………(9) 

 

From (8) and (9) we have that     √� ∗ � = √� ∩ � . 
 

Claim 2√� ∩ � = √� ∩ √� 
 

From lemma 3.2i, we have that √� ∩ �√� and √� ∩ �√� 

Which implies √� ∩ �√� ∩ √�    ………….. (10) 

 

To prove:√� ∩ √�√� ∩ �,let		� ∈ � 

 

 �√�  	�√�  (�) = min �sup
m

��(��), sup
n

��(��)� =  min{supsup
nm

��(��), ��(��)}

{

  

 
√�
 

√�
 (�) = max �inf

m


�
(��),

inf
n


�
(��)� = max{infinf(

nm


�
(��), 

�
(��)} 

 
Now, for any positive integers m & n, we have  
 
min	{��(��), ��(��)} ≤ min	{��(���), ��(���)} = (��  ��)(���) ≤ sup

1k

(��  ��)(��) = �√�∩�(�) ,    and 
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max �
�
(��), 

�
(��)� ≥ max �

�
(���), 

�
(���)� =  

�
 

�
 (���)

≥ inf
1k

 
�
 

�
 (��)

=


√�∩�
(�) 

Thus,√� ∩ √�√� ∩ �which  implies the second equality follows. 

 

Therefore, from claim 1 &2 , we have that √� ∗ � = √� ∩ � = √� ∩ √� 
 

Corollary 3.7: If� =   AA
,  is an intuitionistic fuzzy ideal of  , then √�� = √� for all � ≥ 1 , where  

 
�� = � ∗ � ∗ � ∗ … ∗ � (n-times) 
 
Proof:  We prove this by induction. 
 
For � = 1 ,clearly follows 

For � = 2  , put � = � in theorem 3.6   , we get√� ∗ � = √�√�� = √� 
 
Assume it is true for � = � 
 

Now ,√���� = √�� ∗ 	� = √�� ∩ √� = √� ∩ √� = √�     (by theorem 3.6 ) 

√���� = √� 
 

Thus ,√�� = √�		, � ≥ 1 
 

Corollary 3.8If � =   AA
, ,&� = (��	, �

)are intuitionisticfuzzyideals of �	with ��� ,for some � ≥ 1 , 

then √�√�, 

 

Proof: Since��� , we have that √��√� ….     (by lemma3.2 ii)  ………(11) 

 

But   , √�� = √�  …….     by corollary 3.7 ………………..(12) 
 

From (11) and (12) we get that √�√� . 

Definition 3.9: Let	� =   AA
, ,&	� = (��	, �

)  be intuitionistic fuzzy sets in ahemiring R (not necessarily 

commutative).The intuitionistic sum of  � =   AA
, ,&	� = (��	, �

)  is defined to be the intuitionisticfuzzy 

set � + � = (����	,  ���
) in  R , given by 

 
 

����	(�) 			= 					 �
� {��(�) ��(�)},

�����

							��	� = � + �

0																																																		��ℎ������

� 

 
 
 


���

(�) 			= 					 �
� �

�
(�) 

�
(�)� 	,					��	� = � + �

�����

1																																																		��ℎ������

� 

 
Or equivalently the definition can be written as  
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����	(�) 			= �
sup

zyx 

min{��(�), ��(�)} 												��	� = � + �

0																																									��ℎ������

� 

 
 


���

(�) = 	�
inf

zyx 

max �
�
(�),  �

(�)� 				��	� = � + �												

1																																								��ℎ������

� 

 

Theorem 3.10: If � =   AA
, , & 	� = (��	, �

)are  intuitionistic fuzzy ideals of �  , then their sum  

� + � = (����	,  ���
) is also an intuitionistic fuzzy ideal of �. 

 
Proof: Let		�, �	 ∈ � , 
 

����	(�) ����	(�) = �{��(�) ��(�): � = � + �} �{��(�) ��(�): � = � + �}

= �{(��(�) ��(�)) (��(�) ��(�)): � = � + �: � = � + �}

= �{(��(�) ��(�)) (��(�) ��(�)): � = � + �: � = � + �}

≤ �{(��(� + �) ��(� + �)): � + � = � + � + � + �} = ����	(� + �) 

and 
 


���

(�) 
���

(�) = � �
�
(�) 

�
(�): � = � + ��  �{

�
(�) 

�
(�): � = � + �}

= �{�
�
(�) 

�
(�)�  ((�) 

�
(�)): � = � + �, � = � + �}

= �{�
�
(�) 

�
(�)�  ((�) 

�
(�)): � + � = � + � + � + �}

≥ � �
�
(� + �) 

�
(� + �): � + � = � + � + � + �� = 

���
(� + �) 

 

Hence,	����	(� + �) ≤ ����	(�) ����	(�)   and  
���

(� + �) ≥ 
���

(�) 
���

(�) 

 
Secondly  

����	(�) = �{��(�) ��(�): � = � + �} 	≤ �{��(��) ��(��): �� = �� + ��	}

≤ �{��(�) ��(�): �� = � + �} = 	����	(��) 

 
and 
 


���

(�) = � �
�
(�) 

�
(�): � = � + �� 	

≥ 	� �
�
(��) 

�
(��): �� = �� + ��� 	≥ 	� �

�
(�) 

�
(�): �� = � + ��

= 
���

(��) 

Thus  
 

����	(��) ≥ ����	(�)and
���

(��) ≤ 
���

(�) 

 
Similarly it can be shown that   

����	(��) ≥ ����	(�)and
���

(��) ≤ 
���

(�) 
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Therefore, � + � = (����	,  ���
) is an intuitionistic fuzzy ideal of�. 

Theorem 3.11: If	� =   AA
, ,&� = (��	, �

)  are  intuitionistic fuzzy ideals of � , then 

 

√� + √��√� + √� = √� + � 

Proof: 
 
The inclusion part follows from lemma 3.2 i , 
 
 To show the equality part: 
 

Since �√�	&			�	 √�   (by lemma 3.2 i), we have that � + �	 √�	 + √�  BA �√� + √�  (by 

lemma 3.2 ii ) 
 
To show the other way round   , let �	 ∈ �  , then 
 

�√��√�(�) = sup
zyx 

min��√�(�), �√�(�)� =

sup
zyx 

min �sup
m

	��(��), sup
n

��(��)� = sup
zyx 

(sup
m

(sup
n

min	{��(��), ��(��)} ..(13) 

and 
 


√��√�

(�) = inf
zyx 

max �
√�

(�), 
√�

(�)� =
inf

zyx 

max �
inf

m


�
(��), inf

n


�
(��)� =

inf
zyx 

max{infinf(
nm


�
(��), 

�
(��)}………….(14)

 
 
 
Now, let	� = � + �			, �	&	� ∈ � ∶ �&�	are any positive integers. Since �	commutative, we have that  
 
���� = ��� + ���  , for some , � ∈ � . 
 
Hence we get  
 

min{��(��), ��(��)} ≤ min{��(���), ��(���)} ≤ ����(��� + ���) = ����(����) ≤ sup
1k

����(��)

= �√���(�) 

and 
 

max �
�
(��), 

�
(��)� ≥ max �

�
(���), 

�
(���)� ≥ 

���
(��� + ���) = 

���
(����)

≥
inf

1k


���

(��) ≥ 
√���

(�) 

 
Thus , from (13) and (14) , we get that  
 

�√���(�) 	≥ �√��√�(�)and
√���

(�) ≤ 
√��√�

(�) , for all � ∈ � 

 

 
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�√� + √� √� + � 
 
Hence the theorem. 
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