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Abstract In this paper, we prove some fixed point theorems in binary relation ordered
dislocated quasi-metric spaces. These theorems generalize some previous results (see, J.
J. Neito, and R. Rodriguez-Lopez, Contractive mappings theorems in partially ordered
sets and applications to ordinary differential equations, Order, Vol. 22(2005), 223-239,
2005).
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1 Introduction

The study of fixed point theorems in partial ordered metric spaces was first investigated in 2004 by
Ran and Reurings [5], and then by Nieto and Lopez [4]. Also, this study in dislocated metric spaces
was under the name of metric domains in the context of domain theory [3]. In [7], Zeyada, Hassan and
Ahmed generalized a result of Hizler and Seda [2] to dislocated quasi -metric spaces. Fixed point theory
in partially ordered metric spaces has applications in the area of differential and matrix equations (see,
e.g. [4,5]). Also, this theory in dislocated metric spaces has application in logic programming semantics
(see, for example, [1]).
Throughout this paper, let X be a non-empty set and let d : X x X — [0,00) be a function, called a
distance function. We need the following conditions:

(M) d(z,x) =0,

(Ms) if d(z,y) = d(y,z) = 0, then © =y,
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(My) d(z,y) < d(z,z) +d(z,y), for all z,y,z € X.
If d satisfies conditions (M;)-(My), then it is called a metric on X. If d satisfies conditions (M), (M2)
and (M), it is called a quasi-metric on X. If d satisfies conditions (M2) and (M), it is called a
dislocated metric (or simply d-metric) ( a dislocated quasi-metric (or simply dg-metric)) on X
respectively.

Definition 1.1. A poset (X, <) (partially ordered set) is a nonempty set X and a binary relation <
on X such that for all z,y,z € X:

(1) z <Xz (reflexivity),

(2) if z <y and y <X z, then x = y (antisymmetry),

(3) if z <y and y X 2z, then = < z (transitivity).

Two elements z,y € X are called comparable elements if either z <y or y < x.

Definition 1.2. [4] Let (X, <) be a partially ordered set. It is said that f : X — X is monotone
nondecreasing if z,y € X,z <y = f(z) X f(y).

Definition 1.3. [7] A sequence {z,} in a dg-metric space (X,d) is called dislocated quasi -
convergent (for short dg- convergent) if there exists a point x € X such that limn— oo d(zn,z) =
limy, o0 d(z, z,) = 0.

In this case, x is called a dg-limit of the sequence {zn}.

Definition 1.4. [7] A sequence {z,} in a dg-metric space (X, d) is called Cauchy if Ve > 0,3 no € N
such that V m.n > no, d(xm,xn) < € or d(n,zm) < €, where N is the set of all positive integers.

Replacing d(m,zn) < € and d(zn,zm) < € in Definition 1.3 by max{d(zm,zn),d(zn,zm)} < €, the
sequence {z,} in a dg-metric space (X, d) is called ‘bi’ Cauchy (see [6]).

Definition 1.5. [7] A dg-metric space (X,d) is called complete if every Cauchy sequence in it is
dg-convergent.

Lemma 1.6. [7] Every subsequence of dq-convergent sequence to a point zo is dg-convergent to xo.
It is obvious that the converse of Lemma 1.6 may not be true.
Lemma 1.7. [7] dg-limits in a dg-metric space are unique.

In 2005, Nieto and Lopez [4] established a fixed point theorem in partially ordered complete metric
spaces, stated below as Theorem 1.8, which analogues Banach’s fixed point theorem.

Theorem 1.8. [}] Let (X,=X) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a complete metric space. Let f : X — X be a continuous and monotone
nondecreasing mapping such that there exists o € [0,1) with

d(f(z), f(y)) < ad(z,y) Vy =z (*)

If there exists zo € X with o < f(z0), then f has a unique fixed point.
Also, the authors [4] stated and proved the following theorem.

Theorem 1.9. [/ Let (X, =) be a partially ordered set and suppose that there exists a metric d on X
such that (X,d) is a complete metric space. Assume that X satisfies

if a nondecreasing sequence {xn} converges to z, then x, < ¥V n € N. (**)

Let f: X — X be a monotone nondecreasing mapping such that there exists a € [0, 1) with (*) holds.
If there exists xo € X with o < f(z0), then f has a unique fixed point.

The purpose of this paper is to state and prove some fixed point theorems in binary relation ordered
dg-metric spaces. These theorems generalize Theorem 3, Theorem 4 and some results in [4].
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2 Main Results
First, we rewrite some definitions.

Definition 2.1. Let X be a nonempty set and < be a binary relation. A Bset (X, <) is a binary
relation with a nonempty set.

Definition 2.2. Let (X, <) be a Bset. A mapping f: X — X is called monotone nondecreasing
ifr,ye X,z 2y= f(z) X f(y).

Definition 2.3. A sequence {z,} in a dg-metric space (X, d) is called dislocated quasi -convergent
(for short dg- convergent) if there exists a point z € X such that lim,— o d(Tn, z) = limp oo d(x, T5) =
0.

Definition 2.4. A sequence {z,} in a dg-metric space (X,d) is called Cauchy if V¢ > 0,3 ng € N
such that ¥V m.n > no, d(Tm, xn) < €, or d(xn,Zm) < €, where N is the set of all positive integers.

Now, we are ready to state and prove the first theorem as follows:

Theorem 2.5. Let (X, =) be Bset. Suppose that there exists a dg-metric d on X such that (X,d) is a
complete dg-metric space. If f : X — X be a continuous monotone nondecreasing mapping such that
(1) 30 < a <1 such that d(f(y), f(z)) < ad(y,z) and d(f(z), f(y)) < ad(z,y) Vz,y € X with
y 2,
(2) 3 xzo € X such that xo = f(xzo), then f has a fized point.

Proof. Since f is a monotone nondecreasing mapping and there exists zo € X such that zo < f(zo),
then by induction one can deduce that f™(xo) =< f"*'(x0) V n € NU {0}. Then, one can obtain from
(1) that

d(f"" (x0), f" (x0)) < a”d(f(x0),x0) and d(f" (x0), [ (w0)) < a”d(x0, f(x0)),
for every n € N. If m,n € N with m > n, we get that
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Hence, lim d(f™(x0), f"(x0)) = 0. Similarly, one can deduce that lim d(f"(zo), f™(z0)) = 0.
m,n— oo m,n— oo

Therefore, the sequence {f"(zo)} is Cauchy. Since X is complete, then there exists yo € X such that

lim d(f"(x0),y0) = lim d(yo, f"(20)) = 0.
n—o0 n—oo

Since {f™ 1! (x0)} is a subsequence of { f™ (o)}, then { f™T*(z0)} dg-converges to yo. From the continuity

of f, {f"*(x0)} dg-converges to f(yo). The uniqueness of dg-limits gives that d(yo, f(v0)) = 0; i.e., yo

is a fixed point of f. O

Corollary 2.6. Let (X, <) be a a partially ordered set. Suppose that there exists a d-metric d on X
such that (X,d) is a complete d-metric space. If f: X — X be a continuous monotone nondecreasing
mapping such that (1) and (2) hold as in Theorem 2.5, then f has a fized point.

Remark 2.7. Corollary 2.6 improves Theorem 2.5 since

(i) (X, =x) is Bset instead of (X, <) is a partially ordered set,
(ii) d is a d-metric on X instead of d is a metric on X.
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Theorem 2.8. Let (X, =) be Bset. Suppose that there exists a dg-metric d on X such that (X,d)
is a complete dg-metric space. Assume that X satisfies (**) as in Theorem 1.9. If f: X — X is a
monotone nondecreasing mapping such that (1) and (2) hold as in Theorem 2.5, then f has a fized
point.

Proof. In the proof of Theorem 2.5, we deduce that the sequence {f™(zo)} converges to yo € X. Then,
given € > 0 there exists n1 € N such that for all n > nq,

d(f™(z0),0) <§ and d(yo, f"(z0)) < %

From (**), we obtain that f™(xo) < yo for all n € N. Since {f™"*(x0)} is a subsequence of the sequence
{f™(20)}, then we have from Lemma 1.7 that {f"*'(x0)} dq-converges to yo € X.
Thus, given € > 0 there exists ny € N such that for all n > na,

A" o) o) < 5 and dlyo, £ (w0)) < 5.

Therefore, given € > 0 there exists m € N with m = max(n1,n2) such that for all n > m,

d(f(yo),yo) < d(f(yo), f(f"(x0))) + ( (0),0)
< ad(yo, f"(x0)) + d(f" " (z0), yo)
< d(yo, f"(20)) + d(f" (z0), y0)
< 5 + 5 =€
and
d(yo, f(yo)) < dlyo, [ (o)) + d(f (" (20)), f(¥o))
< d(yo, [ (20)) + ad(f" (0), yo)
< d(yo, [ (0)) + d(f" (x0), yo)
< % + % =€
Since € is an arbitrary, then one can deduce that yo is a fixed point of f. O

Corollary 2.9. Let (X,=) be a partailly ordered set and suppose that there exists a d-metric d on
X such that (X,d) is a complete d-metric space. Assume that X satisfies (**) as in Theorem 1.9. If
f:+ X — X is a monotone nondecreasing mapping such that (1) and (2) hold as in Theorem 2.5, then
f has a fixed point.

Similarly, one can prove the following Theorem.

Theorem 2.10. Let (X, <) be a Bset. Suppose that there exists a dg-metric d on X such that (X,d)
is a complete dg-metric space. If f : X — X is a monotone nondecreasing mapping such that (1) holds
as in Theorem 2.5. Assume that either f is continuous or X satisfies

(3) [ is a nonincreasing sequence {xn} which converges to u € X, say, then u < x, Vn € N.
If there exists xo € X such that f(xo) < xo, then f has a fized point.

Corollary 2.11. Let (X, =X) be a partailly ordered set. Suppose that there exists a d-metric d on X
such that (X,d) is a complete d-metric space. If f : X — X is a monotone nondecreasing mapping
such that (1) holds as in Theorem 2.5. Assume that either f is continuous or X satisfies (3) as in
Theorem 2.10. If there exists xo € X such that f(zo) =< zo, then f has a fized point.

Remark 2.12. (i) In Theorems 2.5, 2.8 and 2.10, if for every z,y € X, there exists an upper bound
or a lower bound, then the fixed point is unique.

(if) Corollary 2.9 (resp. Corollary 2.11) improves Theorem 4 (resp. Theorem 8 of [4]) for the same
reasons as in Remark 2.7.
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