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ABSTRACT 

 
This article introduces the fractional Residual Power Series Method and the Elzaki transform tool as a 

way to solve nonlinear time fractional partial differential equations (ERPSM). Two physical models are 
solved to show the approach utilized. The first model consists of the Rosenau-Hyman equation and the 

nonlinear time-fractional Burgers equation with the required initial data. 
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1. Introduction 
 
In recent decades, many mathematical models have been reformulated using the idea of fractional 
calculusbecause it was found to reflect the modeled phenomenon in a more accurate and realistic way by 
replacingthe ordinary derivative with a fractional derivative (FD) in the model [1-8]. 
 

In 2013, Abu Arqub originally presented the residual power-series (RPS) method, a potent technique for 
resolving both linear and nonlinear issues. 
 
Tarig Elzaki introduced the Elzaki transform at the beginning of 2011 [6, 12], which is specified for the 
function of exponential order. Consider the set's function defined as: 

 

For a given function  in the set   , the constant    must be finite; number may be finite or 
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infinite. The   Elzaki transform denoted by the operator  is defined as  

                                                                                                                        (1) 

The   variable  in this transforms is used to factorize the variable . 

This article's general organization is as follows: The ERPSM is proposed with the essential fundamental 
technique and posed with the essential fundamental technique and examples of its application to solve 
nonlinear time fractional partial differential equations, followed by conclusions. First, we start with some 

fundamental concepts of fractional calculus. 
 
2. Fundamental Concepts of Fractional Calculus 
 
Definition: 2.1 [13]  

Let  be a continuous function, but not necessarily differentiable, then  

i-     Let us presume that where is a constant, thus α- derivative of the function is 

 

 On the other hand, when  hens 

 

And fractional derivative of the function will be known as  

 

ii-    at any positive ,   one has 

                                                                                    (2) 

 
Definition: 2.2[12, 19]  

Caputo fractional derivative of the left sided is known as, accordingly 

                                                                        (3) 

We hold properties of the operator [5, 7, 18, 19] 

i-  

ii-   

iii-  

 
Definition: 2.3[15, 16]  

The power series 

 

is called a fractional power series about , where  is a variable and  are the 

coefficients of the series, . 
 
Definition: 2.4 [12]  
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If ; 

then the Elzaki transform of the fractional derivative is,  

                                                             (4) 

 
3. Elzaki Transform Residual Power Series (ERPS) Method 
 
In this section, we establish the general form of a nonlinear inhomogeneous fractional partial differential 

equation: 

                                                                                               (5) 

 With the initial conditions 

                                                                                                          (6) 

Where L denotes a linear fraction differential operator, N is general nonlinear fraction differential 
operator, and  is a known function.  
Using the Elzaki transform on both sides of Eqs (5) and (6), to obtain:  

                                    (7) 

Using the properties of Elzaki transform, to obtain: 

                                        (8) 

Operating the inverse transform on both sides of Eq. (8), to get: 

                                                             (9) 

Where represents the term arising from the source term and the prescribed initial conditions.  

The converted function is written as follows in the second phase of the residual power series method:

                                                                                                                         (10) 

To obtain the approximate value of (11), the form of can be written as

 
                                                                           (11) 

We combine (9) with (10), we can attain 

                      (12) 

Substitute the -truncated series (11) into (12), multiply the resulting equation by and then solve 
the equation 

       , 

Here, ERPSM will give the - order approximate solutions with 
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4. Application of Elzaki Transform Residual Power Series (ERPS) Method for Fpdes 
 
In this part, we use Rosenau-Hyman equation models with adequate beginning data and the Elzaki 
residual power series (ERPSM) approach to solve the nonlinear time-fractional Burgers' equation. 
Example 4.1:  
Take into account the nonlinear time-fractional Burgers' equation below, 

 

                                                             (13) 

With the initial condition: 

                                                                                                                                                    (14) 

For the standard case when , the exact solution of (1) is . 

Now, to begin the ERPS methodology stages, we transform (13) using the Elzaki transform and (14) using 
the initial condition to obtain: 

                                   (15) 

Then, we write that the transformed function of (15) is of the form: 
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and the -truncated series of (4) is 
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Accordingly, the - Elzaki residual function takes the form: 
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Substitute the -truncated series (17) into (18), multiply the resulting equation by and then solve 

the equation: 
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and                                                      (20) 

 

                                   (21) 

Therefore, the closed form solution of (1) -(2) is 

                          (22) 

Now, if we substitute in (21) and (22), it gives 

                                                                                             (23) 

In (23) agrees with the Maclaurin series of 

 

 
Example 4.2:  
Consider the following nonlinear time-fractional Rosenau-Hyman equation 
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with the initial condition: 
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For the standard case when , the exact solution of (24) is . 

As we begin the ERPS technique stages, we first apply the Elzaki transform to (24) and use the initial 
condition (25) to obtain: 
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and the -truncated series of (27) is 

                                                 (28) 

Accordingly, the - Elzaki residual function takes the form 

 

.           (29) 

Substitute the -truncated series into (29), multiply the resulting equation by and then solve the 
equation 
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                                                               (32) 

If we replace term  by the tem  in (32) and perform some algebra 

iterations 

 

Therefore, the closed form solution of (24), (25) is, 

 

                                                                 (33) 

Now, if we substitute in (32) and (33), it gives 

 

                                                                              (34) 

This is fully in agreement with the Maclaurin series expansion of the exact solution: 

 

 
5. Conclusions 
 
In this article, a new scheme constructed by a combination of the Elzaki transform tool with the fractional 
residual power series (ERPSM) is presented to solve some important nonlinear time-fractional Burgers' 
type equations and the Rosenau-Hyman equation. 
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