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ABSTRACT 
This paper contributes to the theory of approximation by establishing a relation on the degree of 
approximation for functions belongs to Lipschitz function. Utilizing the product summability method (C, 
1) (E,q), we investigate the behavior of the Fourier series associated with such functions. The findings 
offer deeper insight into the convergence dynamics and approximation precision of product summation 
methods contained in the Lipschitz framework. By demonstrating how these methods surpass classical 
summability in handling non-smooth functions, this work highlights their robustness and potential in 
harmonic analysis. The results not only reinforce the utility of product summability in Fourier 
approximation but also contribute to a broader theoretical understanding of summability methods in 
modern mathematical analysis. 
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1. INTRODUCTION, PRELIMINARIES & MOTIVATION 
 
In mathematical analysis, the concept of degree of approximation serves as a foundational tool for assessing 
the closeness between a function and its approximating series or sequence. While classical convergence of 

series focuses on the limit behavior of partial sums, the degree of approximation provides a more 
nuanced measure of how effectively a summation method captures the functional characteristics of a 
target function particularly in scenarios where absolute or conditional convergence fails. This approach is 
essential in extending the utility of infinite series, especially within spaces of functions exhibiting 

irregularities. 
 
A particularly fertile ground for such investigations is Fourier analysis, where periodic functions are 
represented through infinite trigonometric series. The Fourier series stands as a central pillar in both 
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theoretical mathematics and practical applications such as signal processing, heat conduction, and 
quantum mechanics. However, classical Fourier theory is often inadequate for functions that are non-
smooth or possess discontinuities. In such cases, traditional convergence methods fail to provide 

satisfactory or stable approximations. 
 

This shortcoming becomes especially significant when considering functions in the Lipschitz class, 
denoted by Lip (α) which comprises functions exhibiting controlled, yet possibly abrupt, variations. For 

these functions, classical summability methods (like Cesàro or Abel) frequently fail to guarantee uniform 
convergence. To overcome these limitations, there has been a growing interest in advanced summability 
techniques that offer greater flexibility and approximation precision. 
 
Among such methods, product summability techniques, particularly the combined (C, 1) (E,q) method, 

have emerged as powerful tools. By layering two distinct summability processes, these methods enhance 
the convergence behavior of Fourier series, particularly for functions in the Lipschitz class. This dual 

transformation approach allows for refined control over the summation process, often leading to better 
rates of approximation and improved error bounds. 
 
The evolution of summability theory has been deeply influenced by early foundational work. The 
pioneering insights of Hardy [1] into divergent series and Banach's formulation of linear operations [2] 
laid a robust theoretical groundwork. The extension of these ideas into the realm of Fourier analysis can 
be seen in the contributions of Bochner [3], Chandran [4] and Singh [5], who explored various 

summability and approximation techniques. 
 
More recent advancements have introduced sophisticated matrix based and absolute summability 
methods. Paikray [6], Jati [7] and Misra & Misra [8] have made notable contributions by exploring the 
absolute indexed summability and Banach-type limits, allowing divergent series to be interpreted in 
broader analytical contexts. These works have shown how quasi-monotone sequences and matrix 
transformations can significantly improve approximation outcomes. 

 
 Gradually Diskhit [9] developed relation between Nevalina summability & Fourier serie. Mc Fadden [10] 
found a new idea of product summability, Pati [11] established a relation between non absolute 
summability and norlund method and Nigam [12] discovers an idea of evaluate degree of approximation 

by product method. 
 
In parallel, classical foundations provided by Titchmarsh [13] and Zygmund [14] continue to shape our 
modern understanding of trigonometric series and their approximation properties. The influence of 

Qureshi [15] in analyzing the degree of approximation within Lipschitz classes has been particularly 
enduring, inspiring subsequent research by Lal & Kushwaha [16] into product summability methods. 
These approaches have expanded the analytical toolkit available for tackling the approximation of 
irregular functions. 
  

Altogether, the integration of product summability methods with the structural intricacies of Lipschitz 
class functions in Fourier analysis exemplifies the dynamic evolution of approximation theory. This 
synthesis not only enhances our theoretical understanding of summability and convergence but also 
equips mathematicians with powerful tools to address complex analytical challenges in mathematics, 

physics, and engineering domains. 
 
Definition 1.1:  A function   f∈Lip(α,p) for 0≤x≤2π,if 

  ( ∫ (| f(x+t)-f(x) |)
p2π

0
)

1

p=O (| t|α)     for 0<α≤1 ,t>0 .                                                                  (1)                              
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Definition 1.2: The order of approximation  of a function  f:R→R  under trigonometric polynomial  �� of 
order n is defined by  

| |p
n
-f||

∞
=sup[ |(�) − �(�)|]                                                                                (2)  

                                              
Definition 1.3: Let  ∑ an

∞
n=0  be  series, then  ∑ �n

∞
n=0   is called to be (C,1) summable to a definite  number s. 

If  lim
n→∞

1

n+1
∑ an

n
n=0 →s , a finite number  and written ∑ an

∞
n=0 =s(C,1).                                           (3) 

 
Definition 1.4:  Let  ∑ an

∞
n=0  be a  series, then  ∑ un

∞
n=0 is called to be (E,q) summable to  s,  

If  lim
n→∞

1

(1+q)n ∑ qn-kn
k=0 �n

k
�s

k
→s , a definite number and written ∑ an

∞
n=0 =s(E,q).                         (4)  

Again, if the (C,1) transform of the (E,q) define by 

 τn= (
1

n+1
 ∑ an

n
n=0 )(

1

(1+q)n
 ∑ �n

k
�q

n-kn
k=0 sk)→s, when  n→ ∞                                                                 (5)                                                                                                                              

Then, we say   ∑ an
∞
n=0  is summable to   (C,1)(E,q)  mean  to s. 

 
Definition 1.5:  Assume  f (t) be a periodical  function  of period  2π & integrable exits in  the Lebesque 
sence .Then Fourier series of f( t) is given by  

 

         f(t)=
a0

2
+∑ (an

∞
n=1 cosnt+bnsinnt)                                                                                                  (6) 

Definition 1.6:  We express two functions f and g in the form f(n) = O(g(n)) if ∃ a  constant k≥0 and a 
number n0 such that ∀ n≥n0 and the  following relationship condition is true  
|f(n)| ≤ kg(n),                                                                                                                                     (7)                                                                                  
 
where big ‘O′ notation stands for an upper limit on the growth of a function. 
 
Example: Let f(n) = 8n2+3n−3. We can say that f(n) = O(n2). For sufficiently large values of n, the 
expression 8n2 +3n-3 is bounded above by Cn2 for some constant C. In the context of asymptotic notation, 
the small ’o’ notation, denoted f(n) = o(g(n)), shows  that f(n) grows strictly not greater than g(n) as n → ∞ 

and written in the form 

 .                                                                                                                     (8) 
Example: If f (n) = n and g (n) = n3, then f(n) = o(g(n)) as n becomes insignificant compared to n2 as n 
increases. 

 
2. PRINCIPAL THEOREM  
 
In the present paper, we are going to prove a important theorem regarding the degree of approximation 
by product mean (C,1) (E,q) of the Fourier series of a function of class Lip(�). 

Theorem2.1.  Suppose  f:R→ R  be a periodical  function  of period 2π &  Lebesque integrable in (-π,π)  
belongs to the Lip(α,r)  where r→∞,then order of approximation off  by the   (C,1)(E,q) by product mean  

of  its Fourier series is    ||τn(x)-f(x) ||
∞

 =O�
1

(n+1)��   for 0<α ≤1 & for n=0,1,2,3,….       

 
3.  LEMMA  
 

Before we prove the main theorem, we use the following lemma. 

Lemma 1.  For 0≤t≤
1

n
 ,   Kn(t)=O(n) 

Lemma 2.   Let   Mn(t)=
1

2π(n+1)
∑ �

1

(1+q)
k  ∑ �k

r
�k

r=0 qk-r sin(r+1/2)t

sint/t
  �n

m=0 ,  

then   Mn(t)=O(1+n)  for    0<t<
1

n+1
 

Lemma 3.     Mn(t )=O �
1

t
�     for 

1

n+1
<t<π. 
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4. PROOF OF PRINCIPAL THEOREM: 
 

We know that  first ��� partial sum of  of  series  (6) at a particular point t=x is 

sn(x)=f(x)+
1

2π
∫ ∅(t).

sin(n+
1

2
)

sin
t

2

2π

0
 dt 

So  (E,q) mean of   series (6)  becomes 

(E,q)(x)= 
1

(1+q)
n ∑ qn-kn

k=0 �n
k
�sk(x) 

             =f(x)+
1

2π (1+q)
n ∫

∅(t)

sin
t

2

π

0
  �∑ �n

k
�n

k=0 sin(k+
1

2
)t�dt 

Therefore using above ,we get (C,1)(E,q) mean of   series (6) 

τn(x)=(
1

n+1
 ∑ an

n
n=0 )(

1

(1+q)
n ∑ qn-kn

k=0 �n
k
�sk(x)) 

                 =f(x)+
1

2π
∑ �

1

(1+q)
k   ∫

∅(t)

sin
t

2

π

0
�∑ �k

r
�k

r=0 �qk-rsin(r+1/2)t�n
k=0  

                   = f(x)+∫ ∅(t)
π

0
Mn(t)  using  Lemma1 

∴ τn(x)-f(x)=∫ ∅(t)
2π

0
Mn(t) dt 

                    =∫ ∅
1

n+1
0

(t)Mn(t) dt+ ∫ ∅(t)Mn
π
1

n+1

(t)dt                           (1)    

Now     ∫ ∅
1

n+1
0

(t)Mn(t) dt ≤ �∫ | ∅(t) |
1

n+1
0

dt�  �∫ |Mn(t) |
s

1

n+1
0

dt�

1

s

 

                                            ≤   O �
1

(n+1α� �∫ (n+1)
s

1

n+1
0

dt�

1

s

 

                                          =  O �
1

(n+1
�� �

(n+1)
s

n+1
�

1

s
 

                                              =O �
1

(n+1
�� �

1

(n+1)
1-s
s

� 

                                                =O �
1

(n+1)
α-1+

1
s

� 

=    O �
�

(n+1)
α-1+

1
s

� 

=O �
1

(n+1
α−

1
r

�                       (∴
1

r
+

1

s
=1) 

=   O�
1

(n+1)��           (2)          (∴r→∞)                                   

Also,       ∫ ∅(t)Mn
π
1

n+1

(t)dt   ≤ ∫ (∅(t))dt
π
1

n+1

   �∫ (M(t)
n
)
sπ

1

n+1

dt�

1

s
  

  =O �
1

(n+1)
�� �∫

1

ts
π
1

n+1

dt�

1

s
 

              =O �
1

(n+1)�� (
1

n+1
)

1-s

s  

              = O �
1

(n+1)
α-1+

1
s

� 

              = O �
1

(n+1)
α--

1
r

�   

=O �
1

(n+1)��                           (3)                                                                                                     

Combining (1), (2) and (3),we get  
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||τn(x)-f(x) ||
∞

 =O�
1

(n+1)
��   for 0<α ≤1 & for n=0,1,2,3,….   

  
CONCLUSION 
 
The present research highlights the effectiveness of product summability techniques in the approximation 
of functions belonging to Lipschitz classes. By analyzing the behavior of summability methods such as 
Cesàro and Nörlund means in product form, we have shown that these techniques provide better 
convergence and approximation rates for functions with limited smoothness. The study demonstrates 
how product summability methods can manage the intricacies of functions with localized variations, 

making them powerful tools in both theoretical and applied mathematics. 
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