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Abstract In this paper we introduce the notion of F'— contraction via a— admissible
pair of mappings. We also provide many common fixed point results regarding rational
expressions in the setting of metric spaces. Moreover, we also present some illustrated
examples as an application of this concept and we also establish an existence theorem for
integral equations.
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1 Introduction and preliminaries

Banach fixed point theorem is one of the most remarkable results in the theory of metric spaces. In
1922, the Polish mathematician Banach [1] established a very important result regarding a contraction
mapping, known as the Banach contraction principle. One of the biggest common applications of fixed
points of contractive mappings noted for particular types of spaces is the acceptance of the existence
and uniqueness of solutions of nonlinear functional equations. One of such tools was newly concluded
by Wardowski [2], where the author introduced a new family of mappings, the so called F or § family.
He notified a new concept of contraction condition called F'— contraction and proved a fixed point
theorem which generalizes the Banach contraction principle. Secelean [3] proved fixed point theorems
by iterated function systems consisting of F'— contractions. In 2013, Sgroi and Vetro [4] discussed the
multivalued F'— contractions and the solution of certain functional and integral equations. Afterwards
Piri and Kumam [5] proved fixed point result for F'— Suzuki contractions which generalizes the result
of Wardowski [2]. F'— contractive mappings of Hardy-Rogers type and Ciric type were investigated by
Cosention and Vetro [6] and Minak et al. [7]. Later on, Ahmad et al. [§] recalled the concept of new
fixed point theorems for generalized F'— contraction in complete metric spaces. Klim and Wardowski [9]
investigated the fixed points dynamic processes of set valued F'— contractions. Further Khan et al. [10]
studied two new types of fixed point theorems for F'— contraction . Some fixed point theorems for
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generalized F'— contractions involving new rational expressions were also established by Paesano and
Vetro [11], Arshad et al. [12] , Ali and Kamran [13] and Budhia et al. [14]. Very recently, Tomar
and Sharma [15] established coincidence and common fixed point theorems for a discontinuous non-
compatible pair of self maps in noncomplete metric space.

In 2012, Samet et al. [16] introduced the class of a — 1 contractive type mappings and established
many fixed point theorems for such mappings in the set up of complete metric space which generalize
and extend the Banach contraction principle. Many authors appreciate these conditions which can
be seen in [17-33]. In recent paper, Al-Rawashdeh et al. [33] introduced the concept of modified F'—
contractions via a— admissible pair of mappings. In the present work, we extend the notion o — v
contractions appraised by Al-Rawashdeh et al. [33].

Wardowski [2] introduced the concept of F'— contraction as follows:

Definition 1.1. [2] Let S be the family of all functions F : (0,4+00) — R such that

(F1): F is strictly increasing, that is, for all «, 8 € (0,400) if @ < 8 then F(a) < F(B) ;
(F2): For each sequence {a,} of positive number, the following holds:

lim o, =0iff lim F(a,)=—o0;
n—oo n— oo

(F3): There exists k € (0,1) such that lim (a*F (@) = 0.
a—r 00

Let (X,d) be a metric space. A map T': X — X is said to be an F— contraction on (X,d) if there
exist F' € & and 7 > 0 such that for all z,y € X,

d(Tz,Ty) >0 =7+ F(d(Tz,Ty)) < F(d(z,y)).

Some examples of the functions belonging to F' are:

F(a) = In «a; (1.1)
Fla)=lna + a,a > 0; (1.2)
F(a)::/é,a>0; (1.3)
Fla)=In(a® + a),a>0. (1.4)

The author [2] has proved fixed point theorem which generalizes Banach contraction principle by using
the notion of F'— contraction.

Theorem 1.2. [2] Let (X, d) be a complete metric space and let T : X — X be an F— contraction.

Then T has a unique fized point ©° € X and for every zo0 € X a sequence {T"xo}nen s convergent to

z°.

Remark 1.3. [2] Let T be an F— contraction. Then d(Tz,Ty) < d(z,y) for all z,y € X such that
Tx # Ty. Also, T is a continuous map.

In 2012, Samet et al. [16] introduced the class of a— admissible mappings.

Definition 1.4. Let 7: X — X and a: X X X — [0, 00) be given mappings. We say that T is an a—
admissible mapping if for all z,y € X, we have

ao(z,y) > 1= a(Tz,Ty) > 1.

Many authors have considered this result for generalized contraction using a— admissible mappings,
see [17], [18], [19], [22], [28] and [31]. Recently, Aydi [20] generalized the Definition 1.4 and introduced
the following:

Definition 1.5. [20] Let A,B: X — X and a: X x X — [0,00) be the given mappings. We say that
(A, B) is a generalized o— admissible pair if for all z,y € X, we have

a(z,y) > 1= a(Az, By) > 1 and a(By, Az) > 1.
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More recently, Al-Rawashdeh et al. [33] modified the notion of F'— contraction via a— admissible pair
of mappings.

Definition 1.6. Let A, B: X — X be self mappings and let (X, d) be a metric space. The pair (A, B)
is @ — F'— contractive if there exists 7 > 0 such that for all z,y € X witha(z,y) > 1

d(Az,By) > 0= 7+ F(d(Az, By)) < F(M(z,y)) ,

whete € S and M(z.y) = max {d(o,), d(o, Az).dly, By), X050 L A0AD Y

Starting from the work of Wardowski [2], the object of this paper is to develop fixed point theory in
this direction: we study the notion of F'— contraction via a— admissible pair of mappings and to prove
some common fixed point theorems for this type of contractions, which are more general than the F—
contraction introduced by Wardowski [2]. We obtain the appropriate results and verify with the help
of illustrative examples associated with the Volterra type integral equation.

2  Main results
We introduced the concept of an o — F'— contraction defined in the following manner:

Definition 2.1. Let M, N : X — X be self mappings and let (X, d) be a metric space. The pair
(M, N) is a — F'— contractive if there exists 7 > 0 such that for all z,y € X with a(z,y) > 1

d(Mz,Ny) > 0= 1+ F(d(Mz,Ny)) < F(G(z,y)) , (2.1)

where F' € & and

z Ve 2.2
Gla.y) = max {d(e.y). (e, Mz).d(y, Ny), (a0 ) g )} 22

In the case where F(t) = In (¢) fort > 0, (2.1) becomes
d(Mz,Ny) < e "G(z,y) = kG(z,y) (2.3)

for all a(z,y) > 1, Mz # Ny and k = e™" < 1. Note that (2.3) is also satisfied for all z,y € X with
a(z,y) > 1 and Mz = Ny.

Now, let us prove the following main theorem:

Theorem 2.2. Let (X,d) be a complete metric space and M, N : X — X be such that (M, N) is
a — F'—contractive. Suppose that

(i) (M, N) is a generalized a— admissible pair;

(i) there exists my € X such that a(xo, Mxo) > 1 and a(Mzo,x0) > 1;

(#i) Mand N are continuous.

Then M and N have a common fized point.

Proof. By assumption (ii), there exists a point 2o € X such that a(zo, Mzo) > 1 and a(Mzo, z0) > 1.
Take z1= Mzo andzz= Nz . By induction, we construct a sequence {z, } such that

ZTon= Nzon_1andasn 1= Mzay, Yn=1,2,... (2.4)

Let sp, = d(zn,Zny1) forn > 0.
We split the proof of our result into several steps:
Step 1: a(xn,Tnt+1) > 1 and a(zpt1,T,) > 1 for all n > 0.
We have a(xo,21) > 1 and a(z1,20) > 1. (M, N) is a generalized a— admissible pair of mappings, so
a(z1,z2) = a(Mzo, Nz1) > 1 and a(z2, 1) = a(Nz1, Mxo) > 1.
We also have a(xs,z2) = a(Mz2, Nz1) > 1 and a(z2,z3) = a(Nz1, Mx2) > 1.
Now we obtain
&(Tn,Tny1) > 1 and a(Tny1,2n) > 1 (2.5)

foralln=0,1,2,....
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Step 2: We shall prove that
lim s, = 0. (2.6)

n— oo
If d(w2n, T2n+1) = 0 for some n, then we prove that d(z2n+1, 2n+2) = 0. On the contrary suppose that,
d(T2n+1, Tant2) = d(Mx2n, NXant1) > 0. From (2.1) and (2.5) (i.e., a(z2n, T2nt1) > 1), by triangular
inequality, we have

T+ F(d(z2n+1,T2n42)) < 7+ F(d(Mz2n, No2541)) < F(G (220, T2n+1)) ,
d(x2an, Tant1), d(T2n, M22n), d(T2n 11, Nz2ni1),

where G(r25,Z2n+1) = max d(z2n, Noont1)+d(@any1,Mzan) d(l’ z )
d(zan,Mzon)+d((z2n4+1,Neap41)+1 2ns L2n+1

= max {Oa 07 d(m2n+17 '7:271+2)7 O} = d(m2n+17 $2’n+2)‘
Then, 7+ F(d(x2n+1, T2n+2)) < F(d(2n+1, T2n+2)). This implies that
F(d(zant1, T2nt2)) < F(d(@2ni1, Tont2)).

From (F1),
d(T2n41, Tant2) < d($2n+17$2n+2),

which is a contradiction.

Clearly, we have 2, = T2nt1 = T2pt2. Then x2, = T2ntm, for all m = 0,1,2,..., we have z2, =
Ton+1 = Mxo, andxe, = r2ntr2 = Nxopt1 = Nxa, . Hence xa, is a common fixed point of M andN.
Similarly, if d(x2n+1, T2nt2) = 0 for some n, we find that x2,41 is a common fixed point of M and N
and this completes the proof.

Now suppose that d(z2n,T2n+1) > 0 for all n > 0. Since d(z2n, Ton+1) = d(Mxon, Nx2n—1) > 0, by
(2.1) and (2.5) (i.e., a(x2n, Tan—1) > 1), we have

T+ F(d(z2n+1,%2n)) = T + F(d(Mz2n, Noon—1)) < F(G(x2n, Tan—1)),

where

d(T2n, Tan—1), d(T2n, Tant+1), d(T2n—1, Tan),
G($2n;x2n71) = max d(z2n,22n)+d(T2n—1,22n41) d(l’ z )
d(z2n,T2n+1)+d((T2n—1,2n)+1 2ny L2n—1

d n—1, n
= max {d(xgn,xzn_l),d(xzn,mnﬂ)’ (d((x(:il 1$2$27511_ 1) d(xQn,$2n—1)}

= max {d(®2n, Tan-1), d(T2n, Tant1)}

Therefore, by (F1),
d(z2n+1,T2n) < max{d(x2n,Tan—1), d(T2n, Tant1)} .

If max {d(z2n, T2n—1), d(T2n, Tont1) = d(T2n, T2n+1), then 0 < d(Tan+1, T2n) < d(T2n, Tan+1), which is
a contradiction. Thus, for all n > 0,

F(d($2n+1, l‘gn)) S F(d(l‘gn, $2n71)) —T. (27)

Again, we have d(z2n+1, T2n+2) = d(MZ2n, Nx2n+1) > 0. Then, by (2.1) and (2.5) (i.e,a(z2n, Tant1) >
1), we get

T+ F(d(z2n11, T2n42)) = T + F(d(M 25, Nzant1)) < F(G(22n, T2n11)),
where,

d(@2n, Tant1), d(Tan, Tant1), d(@2nt1, Tany2),

G(1‘2n7$2n+1) = max d(z2n,22n+2)+d(T2n41,Z20+1) d(m x )
d(z2n,Tan+1)+d((Tant1,T2n42)+1 2ns L2041
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d(z2n, T2n
= max {d($2n,x2n+1)7d(x2n+1,x2n+2)7 (d((m(jz ZEZ:2+:)2)+1) d(x2n7m2n+l)}

= maX{d(ﬂwn,$2n+1),d($2n+1,$2n+2)}-
Then, by (F1),

d(Ton+1, Tant2) < max{d(x2n,ZTont1), d(T2ant1, Tant2)} -
If max{d(z2n, Tont+1), d(T2n+1,Ton+2)} = d(Tant1, Tant2), then
0 < d(®2n+1, T2nt2) < Y (d(T2n41, T2nt2)) < d(T2n41, T2nt2),
which is a contradiction. Thus
F(d(z2nt1, Tant2)) < F(d(z2n, Tani1)) — 7 (2.8)
for all n > 0. Combining (2.7) and (2.8), we get

F(sn) < F(sp-1)—T (2.9)
for all n > 1. We have
F(sn) < F(sn-1) =7 < F(sp—2) — 27 < ... < F(so) —n1 (2.10)
for all n > 1. From (2.10), we obtain lim F(s,) = —oo. Applying (F2), we get
n— oo
nlLII;O sn = 0. (2.11)

Step 3: We shall prove that {z,} is a Cauchy sequence. From (2.11) and (F'3), there exists k € (0,1)
such that

lim sfF(s,) = 0. (2.12)
n—oo
By (2.10), we have for alln =1,2,...
SEF(sn) — sE F(s0) < sk(F(so) —nr) — sk F(so) = —nrsk <0. (2.13)
Letting n — oo in (2.13), by (2.11) and (2.12), we obtain
lim nst = 0. (2.14)
n—roo

This implies that there exists ng € N such that for all n > ng,
1
Sn < 1. (2.15)
nk
Then for all n > ng and p € N

n+p—1 n+p—

AT, Tntp) < Z d(wi, Tit1) = Z Z

i=n

x‘\u‘ =

oo
Since Y. -4 < oo, lim d(zn,Tnip) = 0. Thus {z,} is a Cauchy sequence.
n>1 nk n— oo

As (X, d) is a complete metric space, there exists u € X such that hm d(zn,u) = 0.

— 00

Step 4: We shall prove that u is a common fixed point of M and N. Having lim d(zn,u) =
n— oo
0 , then lim d(z2n,u) = lim d(z2n+1,u) = 0. By continuity of M and N, we obtain that
n— oo n— oo
lim d(zony1, Mu) = lim d(Mza,, Mu) =0 and lim d(z2ny2, Nu) = lim d(Nzopi1, Nu) =0.
— 00 n—oo n—oo n—oo

n

Hence Mu = uw= Nu, i.e, v is a common fixed point of M and N. This completes the proof.
O

Now, let % be the family of continuous functions ¥ : [0, 00) — [0, 00) satisfying the following condition:
P(t) < tfor all t > 0. As in Definition 2.1, we introduce the concept of an « — 1 — F— contraction
as follows:
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Definition 2.3. Let (X, d) be a metric space and M, N : X — X be self mappings. The pair (M, N)
is @« — ¥ — F—contractive if there exists 7 > 0 such that for all z,y € X with

a(z,y) > 1

d(Mz,Ny) > 0= 7+ F(d(Mz,Ny)) < F((G(z,y))) (2.16)
whereF € &, ¢ € ¥ and G(z,y) is defined by (2.2).

In our next result, we replace the continuity hypothesis by the following property:

(H): If {z,, } is a sequence in X such that a(zn, Tny1) > 1and a(@ny1, 2,) > Morallnand z, -z € X
as n — oo, then there exists a sequence {:cn(k>}of {zn} such that a(z, ), z) > land

a(x, Tny) > 1 for all k.

So we have, the ensuing theorem:

Theorem 2.4. Let (X,d) be a complete metric space and M, N : X — X be self mappings such that
the pair (M, N) is o — 1 — F— contractive. Suppose that

(i) (M, N)is a generalized a— admissible pair;

(i) there exists z0 € X such that a(xo, Mxo) > 1 and a(Mzo,z0) > 1;

(i41) (H) holds.

Then M and N have a common fixed point.

Proof. Following the proof of Theorem 2.2, it is obvious that the sequence {z,} is a Cauchy sequence
in (X,d) and converges to some u € X. Now we shall prove that Mu = u = Nu. Suppose on the
contrary that, Mu # u, or, Nu # u. If x,, = Mu and x,, = Nu for arbitrary large n, so, necessarily
Mu = uw = Nu . Therefore, we assume that =, # Mu or z, # Nu for infinitely many n . Let us
suppose that x,, # Mu for all n € N .

Since for all k € N we have d(Mu, Ton)) = d(Mu, Nxoyy—1) > 0. Then, by assumption (iii) (i.e.,
a(u, Tappy—1) > 1) and (2.16) , we have the following

T4+ F(d(Mu, Nzayy—1)) = 7 + F(d(Mu, Neonw)-1)) < F(Y(G(u, T2ny-1))) » (2.17)

where
d(u, Tonky—1), d(w, M), d(T2n(k)—1, NTonk)—1),

G(u, Topry—1) = max d(u,N@oy, () —1)+d(@2y (k) —1,Mu)
A, @) A2 () 12 N () 1)+1) d(u, Tan(k)-1)

d(% x2n(k)—1)7d(u ](\4u (ﬂ)ﬁzn(k) 173:277.(1@)2
= max A(w,Top (1)) +d(@Tan (k) 1, Mu .
d(u,Mu)+d((T2n(k)—1- Izn(mHl) d(u, x2"<k)’l)
We know that lm d(u, Tony—1) = Hm d(Top)—1,T2nm)) = lim d(u, zanpk)) =0,
n—o00 n— oo n—r00
and lim d(z2pk)—1, Mu) = d(u, Mu).
n— o0
On the other hand, by (2.17) and (F1), we have for all k € N

d(Mu7 xQn(k)) = d(Mu, Naxgn(k)_l) < w(G(u,mgn(k)_l)) s (2.18)

for all k£ € N.
Mention to above limits and using the continuity of ¥ in (2.18), as k — oo, we get

d(Mu,u) < (d(u, Mu)).
Remembering that ¢ (¢) < t for all ¢ > 0, so the above inequality becomes
0< dMu,u) < (d(u, Mu)) < d(Mu,u),

This is a contradiction. Hence, we find that u is a fixed point of M. Similarly, we can show that w is
a fixed point of N. Thus, u is a common fixed point of M and N. O

We furnish the following example in support of our hypothesis.
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Example 2.5. LetX = R endowed with the standard metric d(x,y) = |z — y| for allz,y € R.
Define the mapping M, N : X — X by

= ifzelo] [ 0sifze0,1]
Mx7{3x—1;ifw>0 and - Nz = x ;ifz > 0.

Define the mapping a: X x X — [0,00) by

(z.1) = 14+ L if g,y € [0, 1]
’ 0 ; otherwise.

Let ¢(t) = 2t, F(t) = In(t* + t)for all t > 0 and 7 =In 3 . Letx,y € X such that a(z,y) > 1. By
definition of « , this implies that z,y € [0,1]. Thus

a(Mz, Ny) = o(%,

172 x
2 0) =1+ >1 and a(Ny, Mz) = a(0, Z) =14€0T1) >,

Then,(M, N)is a generalized a— admissible pair .

Pointing out that M and Nare noncontinuous mappings, now, we show that (H) is verified.

Let {x,,} be a sequence in X such that a(xn, zn+1) > 1 and a(zpt1,2,) > 1, for all n and z,, — u € X.
Then {z,} C [0,1]. Consequently, v € [0,1] . Thus, a(z,,u) = 1+ e@nt®) > 1 and a(u,z,) =
1+ e<“2+z") > 1 for all n. Moreover, the exists zo € X such that a(xo, Mxo) > 1 and a(Mxo, x0) > 1.
In fact, for zo = 1, we have a(1, M1) = a(1,4) = 1+ e > 1and a(M1,1) = a(},1) = 1 + €16 > 1.
Now, we prove that (M, N)is a — 1 — F— contractive. Let x,y € X such that «(z,y) > 1.

So, x,y € [0,1]. In the case, we have d(Mz, Ny) = |[Mz — Ny| = § and we also have

3z z+ |y — 2
G(x, = maxs |z —y|,—,y, | =— | |v —
(z,9) | y|4y<?,f+y+1 lz =yl

r—y;0<y< g
_ 3
=913 i<ysT
y R <y<l.

that is,
3
for allz,y € X such that a(z,y) > 1. Therefore,

d(Mz, Ny)(1 + d(Mz, Ny)) < 2¢(G(x,y))(1 + Zw(G(I, y))

=~ w

3
< 4 ¥(G(,y) (A +9(G(z,y))).
So, for allz,y € X such that a(z,y) > 1 and d(Mz, Ny) > 0, we have

T+ F(d(Mz, Ny)) < F((G(x,9))) -

Hence, all hypotheses of Theorem 2.4 are verified. Indeed, {0, g} is the set of common fixed points of
M and N.

Note that Theorem 2.4 assures only of the existence of a fixed point but not the uniqueness. In this
example 0 and % are two fixed points of M and N. So for the uniqueness, we need the following
condition.

(U): For all z,y € CF(M,N), we have «(z,y) > 1, where CF (M, N) denotes the set of common
fixed points of M and N.

Theorem 2.6. Adding condition (U) to the hypotheses of Theorem 2.2 (resp., Theorem 2.4), we obtain
that u is the unique common fized point of M and N.
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Proof. We claim by contradiction, that is, there exist u,v € X such that u = Mu = Nu and v =
Muv = Nv with u # v . By assumption (U) we have a(u,v) > 1. First, assume that hypotheses of
Theorem 2.2 hold. Since d(u,v) =d(Mu, Nv) >0, by (2.1), we have

7+ F(d(u,v)) =7+ F(d(Mu, Nv)) < F(G(u,v)) = F(d(u,v)) .

Then, by (F1)
0 < d(u,v) < d(u,v),

which is a contradiction. Hence v = v. Secondly, suppose that the hypotheses of Theorem 2.4 hold.
Similarly, using (2.16), we get

T+ F(d(u,v)) < F($(G(u,v))) = F(y(d(u,v))) .

Again, by (F1)
' 0 < d(u,v) < ¢Y(d(u,v)) < d(u,v),

which is a contradiction, so, u = v. O

In the following, we present some illustrated consequences and corollaries of our obtained results given
by Theorem 2.2 and Theorem 2.4.

Corollary 2.7. Let (X,d) be a complete metric space and M, N : X — X be given conlinuous map-
pings. Suppose there exists T > 0 such that

d(Mz,Ny) > 0= 7+ F(d(Mz,Ny)) < F(G(z,y)) (2.19)

for all z,y € X , where F € S and M(x,y) is defined by (2.2). Then M and N are unique common
fized points.

Proof. To prove the above corollary it suffices to take «(z,y) = 1 in Theorem 2.2 and to apply
Theorem 2.6. O
Corollary 2.8. Let (X,d) be a complete metric space and M,N : X — X be given continuous
mappings. Suppose there exists k € (0,1) such that

for all z,y € X , where ¢ € ¥ and M (x,y) is defined by (2.2). Then M and N are unique common
fized points.

Proof. To prove the above corollary it suffices to take F'(t) = In(¢t) and 7 = —1In (k) in Corollary 2.7
for Mx # Nz. Note that (2.20) is also satisfied for allz,y € X with Max = Nz . O

Corollary 2.9. Let (X,d) be a complete metric space and M,N : X — X be given conlinuous map-
pings. Suppose there existsk € (0,1) such that

d(Mz, Ny) < kd(z,y), (2.21)
for allx,y € X . Then M and N are unique common fixed points.

Corollary 2.10. ( [2], Theorem 2.1) Let (X,d) be a complete metric space andT : X — X be
an F— contraction. Then T has a unique fized point x* € X and for every zo € X the sequence
{T"x0}n e nconverges to x° .

Proof. Taking M = N =T in Theorem 2.2, then by (F1), if d(Tz,Ty) > 0 and 7 + F(d(Tz,Ty)) <
F(d(z,y)), we have 7+ F(d(Tz,Ty)) < F(G(z,y)). The proof is then concluded by Theorem 2.2. [
Corollary 2.11. Let (X,d) be a complete metric space and M,N : X — X be given continuous
mappings. Suppose there exists T > 0 such that

d(Mz,Ny) > 0= 7+ F(d(Mz, Ny)) < F((G(z,y))) , (2.22)

for all z,y € X , where F € § , ¢ € Vand G(z,y) is defined by (2.2). Then M and N are unique
common fized points.
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Proof. To prove the above corollary it suffices to take a(z,y) = 1 in Theorem 2.4 and to apply
Theorem 2.6. 0

Now, we give an example in which we ensure the uniqueness of the common fixed point.

Example 2.12. LetX = R be endowed with the standard metricd(z,y) = |« — y| for allz,y € R.
Define the mapping M, N : X — X by

. sifre(0,1) 0;ifz €[0,1)
— 2 31 ’ _ U I
Mx_{:rfl;ifx>0 and Nx_{xQ;if:r>0.

Define the mapping a: X x X — [0,00) by

_f 2+4][cos x + cos y] ;ifz,y € [0,1]
olw,y) = { 0 ; otherwise.

Let o(t) = 2t, F(t)=In(t>+t) forallt >0 and 7 =In3 . Let x,y € X such that a(z,y) > 1.
By definition of « , this implies that z,y € [0,1]. Thus

a(Mz,Ny) = a(g,O) >1and a(Ny, Mz) = (0, %) > 1.
Then, (M, N) is a generalized a— admissible pair.

3 Application to integral equations

In this section, we discuss the application of fixed point theorem proved by us in the previous section
to the following Volterra type integral equation.

q(t) = /OL(t,s,w(s))der g(t) (3.1)

for t € [0,a], where a > 0. We find the solution of (3.1). Let C([0,a],R) be the space of all
continuous functions defined on [0,a]. For ¢ € C([0,a],R), define the supremum norm as: ||q||, =

sup {q(t)e "'}, where 7 > 0 is taken arbitrary. Let C([0,a],R, |.||,) be endowed with the metric
te [0,a]

d-(q.p) = Sup | la(t) = p®)le™ ™" (3.2)

for all ¢,p € C([0, a], R). With these settings C([0, a], R, [|.||.) becomes a Banach space.
Now we prove the following theorem to ensure the existence of the solution of the integral equation
(3.1).

Theorem 3.1. Assume that the following conditions are satisfied:
(i) L:[0,a] x [0,a] xR =R and g : [0,a] — R are continuous;
(%) Define

Tq(t) = L(t,s,q(s))ds+ g(t).

Suppose there exist T > 1, such that
|L(t7 S, q) - L(t7 S7p)| S Te—T[G(Q7p)]'

For all t,s € [0,a] and q,p € C([0,a],R), where

G(q,p) = max{|q(t) — p(t)[, |q(t) — Tq(t)|, [p(t) — T'p(t)],
la(1)=Tp(t) | +p()—Tq(0)
(\«zft)—Tq(}:sMHp(}:s)—Tpg»Hl) la() = p()[},

then integral equation given in (3.1) has a solution.
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Proof. By assumption (ii)

ITq(t) — Tp(t)| = /O |L(t,s,q(s) = L(t, 5,p(s)))| ds

t

t
< / e (G, p)le™ ™) ds < / e~ |G (g, p)ll, €™ ds
0 0

t
—T T T 1 T
<re T [Gla.p, [ e ds < e (G, e
0

<e " |Glg,p)l, e

This implies that

i.e.,

Tq(t) = Tp(t)| e < e [|Gg.p)l,

[[Tq(t) — Tp(t)|l, < e " |G(g ), ,

which further implies that

T+ In||Tq(t) = Tp(t)||, <In|G(g,p)l, .

Thus, all the conditions of Theorem 2.2 are satisfied. Hence integral equation given in (3.1) has a
unique solution. O
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