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1. INTRODUCTION 
 
Many practical problems cannot be represented by linear programming model. Therefore, attempts were made 
to develop more general mathematical programming methods and many significant advances have been made in 
the area of nonlinear programming. Fuzzy set theory has been applied to many areas such as mathematical 
modeling, operations research, management sciences and many industrial applications. Many authors considered 
various types of the fuzzy non-linear programming problems and proposed several approaches by solving these 
problem[5, 12, 13, 14, 16, 17]. R. E. Bellman and L. A. Zadeh [5] have introduced the decision making in a 
fuzzy environment. M. Lalitha and C. Loganathan [12] have discussed an objective fuzzy nonlinear 
programming problem with symmetric trapezoidal fuzzy numbers. M. Lalitha and C. Loganathan [13] have 
presented solving nonlinear programming problem in fuzzy environment. C. Loganathan  and M. Kiruthiga[14] 
have introduced solution of fuzzy nonlinear programming problem using ranking function. A. Nagoorgani and 
C. Arunkumar [16] have introduced the principal pivoting method for solving Fuzzy Quadratic Programming 
Problem. R. Saranya and Palanivel Kaliyaperumal [17] have presented fuzzy nonlinear programming problem 
for inequality constraints with alpha optimal solution in terms of trapezoidal membership functions. In this 
paper, we consider the objective function, which is of minimization and there are no constraints available. We 
have also discussed the optimality conditions for this problem. This scheme of the paper is as follows: section 2 
provides some basic definitions such as triangular fuzzy number, triangular fuzzy matrix and some operations 
on these two. Section 3 provides the optimality conditions for fuzzy non-linear unconstrained minimization 
problems. Finally, section 4 provides some numerical examples based on these optimality conditions. 
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Abstract:  

In this paper, optimality conditions for fuzzy non-linear unconstrained minimization problems are discussed. 
Here the cost coefficients are represented by triangular fuzzy numbers. Finally, these conditions are verified 
by some numerical examples.  
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2. PRELIMINARIES  

 

2.1.  Fuzzy non-linear programming problem: 

It refers to an optimization problem in which the variables are continuous variables and the problem is of the 
following general form: 

                                            Minimize �(��) 
                                            Subject to ℎ� (��)= 0, i = 1,2,..,m. �� (��) ≥0, p = 1,2,..,t. 	here�(��), ℎ� (��), �� (��) are all real valued continuous functions of  �� = (��
,..,���)∈ 
�. 
 

2.2.  Fuzzy non-linear unconstrained minimization problem: 

It is that minimization problem in which there are no constraints on the variables in the fuzzy non-linear 
programming problem. 
 

2.3.  Types of solutions for a fuzzy non-linear programming problem: 
Consider a fuzzy non-linear programming problem in which a function �(��) is required to be optimized subject 
to some constraints on the variables �� = (��
, . . . . . , ���)�. Let ��  denote the set of fuzzy feasible solutions for this 
problem. For this problem a fuzzy feasible solution �̅� ∈ K is said to be a 
(a) local minimum, if there exists an ∈> 0 such that �(��) ≥ �(�̅�) for all �� ∈ �� ∩{��: ǁ�� − �̅�ǁ <∈}, 
(b) strong local minimum, if there exists an ∈> 0 such that �(��) > �(�̅�) for all �� ∈ �� ∩{��: ǁ�� − �̅�ǁ <∈}, �� ≠ �̅�, 
(c) weak local minimum, if it is a local minimum, but not a strong one, 
(d) global minimum, if  �(��) ≥ �(�̅�) for all �� ∈ ��, 
(e) local maximum, if there exists an ∈> 0 such that �(��) ≤ �(�̅�) for all �� ∈ �� ∩{��: ǁ�� − �̅�ǁ <∈}, 
(f) strong local maximum, if there exists an ∈> 0 such that �(��) < �(�̅�) for all �� ∈ �� ∩{��: ǁ�� − �̅�ǁ <∈}, �� ≠ �̅�, 
(g) weak local maximum, if it is a local maximum, but not a strong one, 
(h) global maximum, if  �(��) ≤ �(�̅�) for all �� ∈ �� , 
(i) stationary point, if some necessary optimality conditions for the problem are satisfied at the point �̅�. 

2.4. Fuzzy set 

A fuzzy set �� is defined by �� = {(x, !(�)): x ∈A,  !(�) ∈ [0,1]}. In the pair (x,  !(�)), the first element x 
belong to the classical set A, the second element ! (x) belong to the interval [0,1], called the membership 
function.  
 
2.5. Fuzzy number 

The notion of fuzzy numbers was introduced by D. Dubois D. and H. Prade. A fuzzy subset �� of the real line R 
with membership function  !�: R→[0,1] is called a fuzzy number if 

i) A fuzzy set �� is normal. 
ii) �� is fuzzy convex. 

(i.e.)  !�[#�
 +(1-#)�%]≥  !�(�
)^ !�(�%), �
, �% ∈R, ∀# ∈ [0,1]. 
iii)  !�  is upper continuous, and 
iv) supp �� is bounded, where supp  ��= {x∈ R: !� (x)>0}. 

 

2.6. Triangular Fuzzy Number 
It is a fuzzy number represented with three points as follows:  Ã  = (a1, a2, a3). This representation in interpreted 
as membership functions 

μ(�(�) =
*+
,
+- 0            for  � < 2
� − 2
2% − 2
        for2
 ≤ � ≤ 2%23 − �23 − 2%       for2% ≤ � ≤ 230              for        � > 23

4 
 
2.7.  Operations of Triangular Fuzzy Number using Function Principle 

Let  Ã = (a1, a2, a3) and   5�  = (b1, b2, b3) be two triangular fuzzy numbers. Then  
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i. The addition of Ã  andB�   isÃ+ 5�   = (a1+b1, a2+b2, a3+b3) where a1, a2, a3, b1, b2, b3 are real numbers. 
ii. The product of  �� and 5�   is �� x  5�   = (c1, c2, c3), where T = {a1b1, a2b2, a3b3} where c1 = min{T}, c2 = a2b2, c3 
= max{T}. If a1, a2, a3, b1, b2, b3 are all non- zero positive real numbers, then �� x5� = (a1b1, a2b2, a3b3) 
 iii. −5�  = (-b3, -b2, -b1) then the subtraction of  5�   from  ��  is ��  -5�  = (a1 - b3, a2 - b2, a3 - b1) where a1, a2, a3, b1, 
b2, b3 are  real numbers. 

iv. The division of  �� and  5�    is 
!�7�  = (c1, c2, c3),  where T = (

89:;,
8<:<,

8;:9),where =
=min{T},=%=
8<:<,=3=max{T}. 

        If 2
,2%,23,>
,>%,>3 are all non-zero positive real numbers then 
!�7�    = (

89:; ,
8<:<,

8;:9). 

 
2.8.  Triangular Fuzzy Matrix 

A triangular fuzzy matrix of order mxn is defined as A=(2��?)@A�, where 2�?=(2�?
, 2�?%, 2�?3) is the BCDE  element 
of A. 
 
2.9.  Operations on Triangular Fuzzy Matrices 

Let A=(2��?) and B=(>��?) be two triangular fuzzy matrices of same order. Then we have the following: 

i.  A+B=(2��? + >��?) 

ii.  A-B=(2��? − >��?) 

iii.  For A=(2��?)@A� and B=(>��?)�AF then AB=(=̃�?)@HF where =̃�? =∑ 2�����J
 .>��?, i=1,2,…,m and j=1,2,,k. 
iv.  ��=(2�?�) 
v.  K�=(K2��?) where K is scalar. 

 
2.10. Positive semidefinite fuzzy matrix 

A fuzzy square matrix �� = (2��?) of order n, whether it is symmetric or not, is said to be a positive semidefinite 

(PSD) fuzzy matrix if ������� ≥ 0 for all �� ∈ 
�. 
 
2.11.  Positive definite fuzzy matrix 

A fuzzy square matrix �� = (2��?) of order n, whether it is symmetric or not, is said to be a positive definite (PD) 

fuzzy matrix if ������� > 0 for all �� ≠ 0. 
 
3. MAIN RESULTS 

 

3.1 Optimality conditions for fuzzy non-linear unconstrained minimization problems 

Let  ��denote the set of fuzzy feasible solutions for an optimization problem in which the objective function �(��) 
is to be minimized. Let �̅� ∈ ��  be a fuzzy feasible solution. A fuzzy feasible direction at �̅� for �� is a direction L� 
satisfying the property that beginning at �̅�, we can move a positive length along a straight line in the direction L�, 
without leaving ��. Necessary optimality conditions for this optimization problem are derived, based on two 
very simple principles. These are the following: 
1. If �M�  is a local minimum for this optimization problem, then, as we move from �̅� straight along any fuzzy 
feasible direction at �̅� for ��, in a small neighbourhood of �̅�, the objective value cannot decrease.  
2. Take a one dimensional, nonlinear, differentiable curve in the fuzzy feasible region ��, passing through �M� . If �̅� 
is a local minimum for this fuzzy optimization problem, then, as we move from �̅� along this curve, in a small 
neighbourhood of �̅�, the objective value cannot decrease (in effect this says that if �̅� is a local minimum for �(��) 
in �� , then �M�must be a local minimum for the one dimensional fuzzy optimization problem of minimizing �(��) 
on the curve). 
 
Of course 1 is a special case of 2, since a straight line is a differentiable curve. These principles make it possible 
for us to derive necessary conditions for local minimality in higher dimensional fuzzy feasible regions using 
well known necessary conditions for local minimality in one-dimensional fuzzy optimization problems. 
All the necessary optimality conditions are derived using the above principles. Even though the principles are 
the same, their application leads to optimality conditions which depend on the structure of the problem. 

We will now derive optimality conditions for  fuzzy nonlinear unconstrained minimization problems. 
First consider the unconstrained minimization problem 
                                          minimize �(��) 
                                          over �� ∈ 
�.                                                                                                          (3.1) 
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Given  �̅� ∈ 
� , L� ∈ 
� , L� ≠  0, by differentiability of � ( �� ), we know that limit of ( � ( �̅� + NL� ) −� ( �̅� ) – N(∇�(�̅�))L�) ̸ N as N tends to zero is zero. So, if (∇�(�̅�))L� < 0 by choosing N positive and sufficiently small, we 
will have �(�̅� + NL�) < �(�̅�). Similarly, if (∇�(�̅�))L� >0, by choosing N negative with sufficiently small absolute 
value we will have again �(�̅� + NL�) < �(�̅�). So if  �̅� is a local minimum for (3.1), we must have (∇�(�̅�))L� = 0 
for all L� ∈ 
�, that is 
                                                                                              ∇�(�̅�) = 0                                                                      (3.2) 
(3.2) is the first order necessary condition for �̅� to be a local minimum for (3.1). 
If �(��) is twice continuously differentible  at �̅�, we know that the limit of (�(�̅� + NL�) −�(�̅�) – N(∇�(�̅�))L�) – (N% ̸ 
2)L��Q�(�(�̅�))L�) ̸ N% as N tends to zero is zero, where Q�(�(�̅�)) is the Hessian matrix (the matrix of second order 
partial derivatives) of �(��) at �̅�. So if �̅� is such that (3.2) is satisfied, and L�is such that L��Q�(�(�̅�))L� < 0 then for N ≠ 0 and sufficiently small, we will have �(�̅� + NL�) < �(�̅�). So, if �̅�is a local minimum for (3.1) we must have L��Q�(�(�̅�))L� ≥ 0 for all L� ∈ 
� when �̅�satisfies(3.2), that is Q�(�(�̅�)) must be PSD.                                                                                                                              (3.3) 
 
(3.2) and (3.3) together are the second order necessary conditions for �̅� to be a local minimum to (3.1).   
 

Theorem 3.1.1(Gradient support inequality): Let �(��) be a real valued convex function defined on an open 
convex fuzzy set R ⊂ 
� If  �(��) is differentiable at �̅� ∈ R,                                           �(��) −�(�̅�) ≥ (∇�(�̅�))(��- �̅�) for all �� ∈ R.                                                                (3.4) 
Conversely, if �(��) is a real valued differentiable function defined on R and (3.4) holds for all��, �̅� ∈ R, �(��) is 
convex. 
Proof: Suppose �(��) is convex. Let �� ∈ R. By convexity of R, N�� +(1−N)�̅� = �̅� + N(��- �̅�)∈ R for all 0≤ N ≤ 1. 
Since �(��) is convex we have �(�̅� + N(��- �̅�)) ≤ N�(��) +(1−N)�(�̅�). So for 0< N ≤ 1, we have                                                     �(��) −�(�̅�) ≥ (�(�̅� + N(��- �̅�)) −�(�̅�))  ̷ N.                                                             (3.5) 
By definition of differentiability, the right hand side of (3.5) tends to ∇�(�̅�)(��- �̅�) as N tends to zero through 
positive values. Since (3.5) holds for all 0< N ≤ 1, this implies (3.4) as N tends to zero through positive values 
in (3.5). 
Conversely, suppose �(��) is a real valued differentiable function defined on Rand suppose (3.4) holds for all ��, �̅� ∈ R. Given ��
, ��% ∈ R, from (3.4) we have, for 0< N < 1, �(��
)−�((1−N)��
 + N��%) ≥ N(∇�(1−N)��
 + N��%) (��
 − ��%) �(��%) −�((1−N)��
 + N��%) ≥ −(1−N)(∇�((1−N)��
 + N��%)) (��
 − ��%). 
Multiply the first inequality by (1−N) and the second by N and add. This leads to 

(1−N)�(��
) +N�(��%) −�((1−N)��
 + N��%) ≥ 0.                                                                                   (3.6) 
Since (3.6) holds for all��
, ��% ∈ Rand 0< N < 1, �(��) is convex. 
 

Theorem 3.1.2: Let �(��) be a real valued fuzzy convex function defined on an open convex fuzzy subset R ⊂ 
�. If �(��) is twice differentiable at �̅� ∈ R, Q�(�(�̅�)) is PSD. Conversely, if �(��) is a twice differentiable 
real valued function defined on R and Q�(�(�̅�)) is PSD for all �̅� ∈ R, �(��) is convex. 
Proof: Let �̅� ∈ Rand L� ∈ 
�.Suppose �(��) is convex.For N > 0 and sufficiently small, by theorem 3.1.1 we 
have 

(�(�̅� + NL�) −�(�̅�) – N(∇�(�̅�))L�)  ̷ N ≥ 0.                                                                                                (3.7) 
Taking the limit as N tends to zero through positive values, from (3.7) we have L��Q�(�(�̅�))L� ≥ 0, and since this 
holds for all L� ∈ 
� , Q�(�(�̅�)) is PSD. 
 
Suppose �(�̅�) is twice differentiable on Rand Q�(�(�̅�)) is PSD for all �̅� ∈ R.  By Taylor’s theorem of calculus we 
have, for ��
, ��% ∈ R, �(��%) −�(��
) – (∇�(��
))(��% − ��
)  
= (��% − ��
)�Q�(�(��
  + N(��% − ��
)))(��% − ��
) / 2 for some 0< N < 1. But the latter expression is ≥ 0 since Q�(�(�̅�)) is PSD for all �̅� ∈ R.  So �(��%) −�(��
) – (∇�(��
))(��% − ��
) ≥ 0 for all ��
, ��% ∈ R.  By theorem 3.1.1, 
this implies that �(��) is convex. 
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Theorem 3.1.3: A square symmetric fuzzy matrix is PD iff all its principal subdeterminants are strictly positive. 
Proof: 

         Let the matrix  QW = 

X
YZ

[�

 … [�
� [�
,�]
⋮ ⋮ ⋮          ⋮[��
[��]
,

⋯⋯ [���[��]
,�

[��,�]
[��]
,�]
`
ab 

If Q� is PD, all its principal subdeterminants are strictly positive. 
On the other hand, if all the principal subdeterminants of Q�  are strictly positive, the n +1  principal 
subdeterminants of Q� are strictly positive, and this implies that Q� is PD.   
The following theorem states a sufficient optimality condition for (3.1). 
 

Theorem 3.1.4: Suppose �(��) is twice continuously differentiable, and �̅� is a point satisfying        ∇�(�̅�) = 0, 
and Q�(�(�̅�)) is PD                                                                                                                                          (3.8) 
then �̅� is a local minimum for (3.1). 
 

Proof: Since Q�(� (�̅� )) is PD, all its principal subdeterminants are > 0. Since � (�� ) is twice continuously 
differentiable, all principal subdeterminants of the Hessian matrix  Q�(�(��)) are continuous functions.These facts 
imply that there exists an ∈> 0, such that if R = {�� : ǁ�� − �̅�ǁ <∈}, all principal subdeterminants of Q�(�(��)) are > 0 for all �� ∈ R. Being a Hessian matrix Q� (�(��)) is also symmetric, by theorem 3.1.3, these facts imply that Q�(�(��)) is PSD for all �� ∈ R. By theorem 3.1.2, this implies that �(��) is convex over �� ∈ R. So by theorem 
3.1.1(the gradient support inequality) �(��) - �(�̅�) ≥ ((∇�(�̅�))(��- �̅�) for all �� ∈ R ≥ 0, since ∇�(�̅�) = 0 by (3.8). 
This proves that �̅� is a local minimum for �(��).This is a sufficient condition for �̅� to be a local minimum for 
(3.1) is (3.8). 
 
4. NUMERICAL EXAMPLE 
 

Example 4.1: 

Consider the problem  
minimize  �(��) = (1.75, 2, 2.25)��
% + (0.75, 1, 1.25) ��%% + (0.75, 1, 1.25) ��3% + (0.75, 1, 1.25) ��
��% + (0.75, 1, 
1.25) ��%��3 + (0.75, 1, 1.25) ��3��
 + (− 9.25, − 9,− 8.75) ��
 + (− 9.25, − 9,− 8.75) ��% + (− 8.25, − 8,− 7.75) ��3 over �� ∈ 
3. 
Solution: 

       From the necessary optimality conditions, every local minimum for this problem must satisfy cd(H�)cH�9   = 0 ⇒ (3.5, 4, 5) ��
 + (0.75, 1, 1.25) ��% + (0.75, 1, 1.25) ��3 + (−9.25, −9,−8.75) = 0. 
 cd(H�)cH�<   = 0 ⇒ (0.75, 1, 1.25) ��
 + (1.5, 2, 2.5) ��% + (0.75, 1, 1.25) ��3 + (−9.25, −9,−8.75) = 0.   
 cd(H�)cH�;   = 0 ⇒ (0.75, 1, 1.25) ��
 + (0.75, 1, 1.25) ��% + (1.5, 2, 2.5) ��3 + (−8.25, −8,−7.75) = 0.   
 
Since by using defuzzification and solving the above system of equations, the unique solution is 

�̅� = h (−0.96, 1, 2.36)(1.88, 3, 5.95)(−0.59, 2, 39.64)n. 
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The Hessian matrix is  
 

Q�(�(�̅�)) = h (3.5, 4, 5) (0.75, 1, 1.25) (0.75, 1, 1.25)(075, 1, 1.25) (1.5, 2, 2.5) (0.75, 1, 1.25)(0.75, 1, 1.25) (0.75, 1, 1.25 ) (1.5, 2, 2.5) n 

 
This matrix is PD(since �̅��Q��̅�> 0). So �̅� satisfies the sufficient conditions for a local minimum. Clearly, here, �(��) is convex and hence �̅� is a global minimum for �(��). 
 
Example 4.2: 

Let � (��) = (−2.25, −2,−1.75) ��
% +  (−1.25, −1,−0.75) ��%% +  (0.75, 1, 1.25)��
��% +  (−10.25, −10,−9.75) ��
 + (5.75, 6, 6.25) ��% and consider the problem of minimizing �(��) over �� ∈ 
%.  
Solution: 

The first order necessary conditions for a local minimum are  cd(H�)cH�9   = 0 ⇒ (−4.5, −4,−3.5) ��
 + (0.75, 1, 1.25) ��% +  (−10.25, −10,−9.75) = 0. cd(H�)cH�<   = 0 ⇒ (0.75, 1, 1.25) ��
 + (−2.5, −2,−1.5) ��% +  (5.75, 6, 6.25) = 0. 
Since by using defuzzification and solving the above system of equations, the unique solution is �̅� = o(−2.30, −2, −1.79)(1.4, 2, 3.02) p. 

The Hessian matrix is Q�(�(�̅�)) = o(−4.5, −4, −3.5) (0.75, 1, 1.25)(0.75, 1, 1.25) (−2.5, −2, −1.5)p. 
Since H(�(�̅�)) is not PSD (since �̅��Q��̅�< 0 ), �̅� violates the second order necessary conditions for being a local 
minimum of �(��). So �(��) has no local minimum. In fact, it can be verified that the Hessian matrix is negative 
definite (ND), so �̅� satisfies the sufficient condition for being a local maximum for �(��) (a local maximum for �(��) is a local minimum for −�(��) ). Actually, �(��) here is concave and �̅� is a global maximum point for �(��). 
It can be verified that �(��) is unbounded below on 
%.  
 
5. CONCLUSION 

 
In this paper, the fuzzy nonlinear unconstrained minimization problem is defined and the optimality conditions 
for this problem are stated. Some examples are discussed based on these optimality conditions. 
 

REFERENCES 

 

[1]. Akrami, Abbas and Erfanian, Majid (2017). An interval nonlinear programming approach for solving a 
class of unconstrained nonlinear fuzzy optimization problems, Mathematical Modelling of Systems, 
ISSN: 1381-2424 (2017) 119-127. 

[2]. Arrora, J.S. (1989).  Introduction to Optimum Design, McGraw-Hill, New York. 
[3]. Bazaraa, M.S., Sherli, H.D.  and Shetty, C.M. (1979). Nonlinear programming, Theory and 

Algorithms, John Wiley and Sons, Newyork.ISBN-10:0471486000. 
[4]. Belegundu, A.K. and Chandrupatla, T.R. (1999).Optimization Concepts and Applications in 

Engineering, Pearson Education. 
[5]. Bellman, R.E. and Zadeh, L.A.(1970).Decision making in a fuzzy environment, Management Science, . 

17(4), 141-164. 
[6]. Cottle, R.W. (1968). The principal pivoting method of quadratic programming, in Mathematics of 

Decision Sciences, Part 1 (Pantzig and Verinott,  A.F. Eds.) Amer. Math. Soc., Providence, 142-162.  
[7]. Deb, K. (1995). Optimization for engineering design: Algorithms and Examples, Prentice Hall of India, 

New Delhi. 



A. Nagoorgani, K. Sudha 

 

384 

 

Bulletin of Pure and Applied Sciences  

Vol. 38E (Math & Stat.) No.1 / January- June 2019 

 

[8]. Hertog, D. Den,  Roos, C. and Terlaky, T. (1991). A polynomial method of weighted centers for 
convex quadratic programming, Inform Optim. Sci., 12 (2), 187-205. 

[9]. Nehi, Hassan Mishmast and Ali, Daryab (2012). Saddle point optimality conditions in Fuzzy 
Optimization Problems, International Journal of Fuzzy Systems, Vol. 14, 1, 11-21. 

[10]. Klafszky, E. and Terlaky, T. (1990). Some generalizations of the criss-cross method for quadratic 
programming in Optimization, 43, 90-52. 

[11]. Kozlov, M.K., Tarasov, S.P.  and Khachian, L.Q. (1979). Polynomial solvability of convex quadratic 
programming, DoSI. Akad. Nauk PkSR, 5, 1051-1053.  

[12]. Lalitha, M. and Loganathan, C. (2016).  An objective Fuzzy nonlinear programming problem with 
symmetric trapezoidal fuzzy numbers, International Journal of Mathematics Trends and Technology 

(IJMTT)-Vol. 37, 1, 29-35[ISSN:2231-5373]. 
[13]. Lalitha, M. and Loganathan, C. (2018). Solving nonlinear programming problem in fuzzy environment, 

International Journal of Pure and Applied Mathematics, Vol. 118, 7, 2018, 491-499. 
[14]. Loganathan, C. and Kiruthiga, M. (2016). Solution of fuzzy nonlinear programming problem using 

ranking function, International Journal of Recent Trends in Engineering and Research, Vol. 02, Issue 
03; 512-520[ISSN: 2455-1457]. 

[15]. Nagoorgani, A. and Arunkumar, C. (2013). A new method on solving Fully Fuzzy LPP using LCP 
approach with the special type of trapezoidal fuzzy numbers, International Journal of Mathematical 
Sciences and Engineering Applications, 7, 153-166.  

[16]. Nagoorgani, A. and Arunkumar, C. (2013). The principal pivoting method for solving Fuzzy Quadratic 
Programming Problem, International Journal of Pure and Applied Mathematics, 85, 405-414.  

[17]. Saranya, R.  and Kaliyaperumal, Palanivel (2018). Fuzzy nonlinear programming problem for 
inequality constraints with alpha optimal solution in terms of trapezoidal membership functions,  
International Journal of Pure and Applied Mathematics, Vol. 119, 9, 53-63.       

[18]. Tseng, P.,  Outrata, J.V. and Romisch, W. (2005). On optimality conditions for some nonsmooth 

optimization problems over q� Spaces1, Journal of Optimization Theory and Applications, Vol. 126, 

No. 2, 411-438, August 2005, DOI: 10.1007/s10957-005-4724-0. 
[19]. Chen, Zhe, Zhao, Kequan and Chen, Yuke (2007). Generalized augmented Lagrangian problem and 

approximate optimal solutions in nonlinear programming, Journal of Inequalities and Applications, 
vol. 2007, Article ID 19323,doi: 10. 1155/2007//19323. 

 


