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Abstract  This study introduces a new decomposition method called the “Upadhyaya
decomposition method” for solving the problem of linear Volterra integro-differential equa-
tions of the second kind. This method is the combination of the Upadhyaya transform
and the decomposition method. Three numerical problems provide a detailed description
and illustration of the procedure. According to the results the current approach is quite
effective and it provides the answers without requiring laborious computational efforts.
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1 Introduction

The integral and the integro-differential equations are widely used in the development of mathematical
models for the solutions of various problems, including those involving electrical circuits, mechanical
vibration, heat transfer, compartment problems, and bacterial growth [1,2]. In order to find the answers
to many of the problems in physics, chemical sciences, mathematics, mechanics and medical sciences
etc. researchers now-a-days are applying a variety of integral transformations [3-22]. Utilizing the Ka-
mal, Mahgoub, Sadik, Aboodh, Mohand, Elzaki, Laplace-Carson, Laplace, Sawi, Sumudu, Shehu and
the other transforms, researchers [23—35] were able to fully solve the first and second kinds of Volterra
integro-differential equation problems. Comparative analyses of the Mohand and other transformations
were conducted by Aggarwal and other researchers [36—41]. Duality relations of various integral trans-
forms were also studied by many researchers [42—49]. In 2019, Upadhyaya [50] introduced a new integral
transform the “Upadhyaya integral transform”. Upadhyaya et al. [51] further gave an update on this
transform. In the subject of mathematical analysis, there is a strong emphasis on investigating vari-
ous strategies and approaches for solving the second-kind linear Volterra integro-differential equations.

* Communicated, edited and typeset in Latex by Jyotindra C. Prajapati (Editor).
Received August 21, 2023 / Revised April 27, 2024 / Accepted May 17, 2024. Online First Published
on June 15, 2024 at https://www.bpasjournals.com/.
fCorresponding author Sudhanshu Aggarwal, E-mail: sudhanshu30187@gmail.com


https://doi.org/10.52710/bpas-math.3
https://www.bpasjournals.com/

20 Sudhanshu Aggarwal and Lalit Mohan Upadhyaya

These equations, which have both differential and integral components, present a unique difficulty that
necessitates specialized strategies for effective resolution. Researchers and practitioners in this field
work hard to investigate and create ways that can accurately and efficiently solve these types of equa-
tions. They intend to analyze and understand complicated systems and phenomena represented by
such equations by utilizing advanced mathematical tools and sophisticated algorithms. This motivates
us to discuss an effective new method in this paper which we call the Upadhyaya decomposition
method to find the solution of the linear Volterra integro-differential equation of the second kind.

Elucidating the scheme of the paper we mention that in section 2 we give the necessary basic definitions
and results which we employ in the sequel for establishing our results of this paper. The Upadhyaya
decomposition technique id discussed bu us in section 3 and the same is applied by us to solve some
interesting problems in section 4. The brief conclusion of the study is summed up finally in section 5.

2 Preliminaries

In this section we detail some preliminary results including the definition and properties of the Upad-
hyaya transform which shall be utilized by us in the succeeding sections of this paper for developing
the technique of the Upadhyaya decomposition method and for its applications. For more details of
these results we refer the reader to Upadhyaya [50] and Upadhyaya et al. [51].

Definition 2.1. Upadhyaya transform [50]: The Upadhyaya transform of a function 6 (z) € C,x >
0, where C is the class of all sequentially continuous exponential order functions, is given by [50]

U{o(x)} = oe/oO<> 0 (vr)e Pdx =T (a, B,7), a,B,v>0. (2.1)

We remark here that in the original formulation of the Upadhyaya transform, the parameters «, 8 and
~ are complex numbers and they are specially defined by Upadhyaya [50] and further generalized by
Upadhyaya et. al. in [51] so that the Upadhyaya transform encompasses all the presently known and
the upcoming integral transforms of the Laplace class, which make it the most generalized, powerful
and robust transform of the Laplace class existing till date in the mathematics research literature.
For the purposes of the present study, we have restricted ourselves to taking all the three parameters
a, 8,7 € R, i.e., the set of the positive real numbers.

Definition 2.2. The inverse Upadhyaya transform [50]: The inverse Upadhyaya transform
of T (a,B,7), designated by U~ {T (o, B3,7)}, is another function 6 (x) having the property that
U{0(z)} = T (a, B,7) . For a rigorous formulation of the inverse Upadhyaya transform we refer the
reader to Upadhyaya [50].

For a ready reference we summarize the Upadhyaya transforms and the inverse Upadhyaya transforms
of some of the most commonly encountered elementary function in Tables 1 and 2 respectively:

Definition 2.3. The linearity property of the Upadhyaya transform [50]: If 0; (z) € C and
UTO: (2)} = Ti(0,B,7) then U{ST, by (2)} = Y0y ald {0: (@)} = 1y @i T (o, B,7), where a;

are arbitrary constants.

Definition 2.4. The translation property of the Upadhyaya transform [50]: If 6(z) € C and
U{0(x)} =7 (a,B8,7) then U {e**0(z)} = T (a, 8 — av,7), where a is an arbitrary constant.

Definition 2.5. The change of scale property of the Upadhyaya transform [50]: If (z) € C
and U {0 (z)} = T (o, B,7) then U {0(az)} = T (2, g,w), where a is arbitrary constant.

Theorem 2.6. The convolution (Faltung) the Upadhyaya transform [50]: If 0; (z) € C, i =
1, 2 andU{6; ()} = Ti(a,B,7),i=1, 2 then

UL (@) 02 (@)} = () U0 @U {62 (@)} = (1) Th(a,8.9) Tl 8.7).

Theorem 2.7. The Upadhyaya transform of the derivatives of a function [50]: If 6(z) € C
and U {0 ()} =T (o, B,7) then
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Table 1: The Upadhyaya transform of some elementary functions [50].

SN|O(z)eC,z>0 U{b ()} =T (o, B,7)
e (%)

s T ()

3 x% a €N a!(gf;fl)

4 |2 a>-l,aeR (%) T (a+1)

5 sin (ax) %

6 cos (ax) %

7 sinh (ax) %

8 cosh (ax) ( 2?5272)

Table 2: The inverse Upadhyaya transform of some elementary functions [50].

SN/| T (a, B,7) 0(x)=U{T (a,8,7)}

1| (3) 1

92 <Bf‘a»y) £0T

3 ( 0;161) ,a €N %(,l

+ | (3). NGz
a>—1,a R

5 ay sin(ax)
(B2+a%7?) a

6 m cos (az)

7 ay sinh(ax)
(B%—a?y?) a

8 (BQS‘W cosh (ax)

.............
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)T (e,8.7) - (2)000)
resn-(guo- (1
) e - ()00 (3)0 0 (2)o"0

2.7.4 U{O" (x)}:(g)" (a, B, )~ ( ap”” 1)9(0)—(@112)9’ (0)—(%) 9" (o)—...—(%) 9= (0).

3 The Upadhyaya decomposition method for the solution of the linear
Volterra integro-differential equation of the second kind

2.7.3 u{e z)

The linear Volterra integro-differential equation of the second kind is given by [1]

0" (z) = h(z) + /\/Oz K (x,)0 (t) dt (3.1)

where

0 (z) = unknown function

h (x) = known function
A = non — zero real number
K (x,t) = kernel
0™ (z) = n'™ derivative of 6 (z) with respect to x

For determining the particular solution of equation (3.1), it is necessary to define the initial conditions
6(0),6' (0),0" (0),...,00~ (0).
In this work, we will assume that the kernel K (z,t) of equation (3.1) is a difference kernel that can be
expressed as K (z,t) = K (z — t). Putting this in equation (3.1), it becomes

0" (@) = h(2)+ A | K (z—1)0(t)dt (3.2)
Consider the initial condition as i
0(0) = ko
6 (0) = v
SOk @9
60D (0) = kn_
Applying the Upadhyaya transform on both sides of equation (3.2), we get
U 0™ (@)} = U {h (2)} + N {/OmK(x —t)e(t)dt}
= U{0(z)} = (%) 0(0) + (%) o' (0) + (%2) 0" 0 +... + (O‘Vﬁzfj 9=V (0) -
+(ﬂn>u{h( )}—&-A(Z—Z)U{ZK(m—t)@(t)dt} |
Using (3.3) in (3.4), we have
S Y B E N ES e P
A<ﬂ7)u{/0 K(x—t)@(t)dt} '
Using the convolution theorem of the Upadhyaya transform in (3.5), we get
oG (2)ne (S (e (P

+A (ﬂn> (L) uix @ruio @)}
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Operating by the inverse Upadhyaya transform operator on both sides of (3.6), we get

0 () = ko + k1z + ko (%2) STy <%) +u! {(%)U{h(x)}}

1 (3.7)
_ A"
AUt {( T )u{K(m)}U{e (m)}}
The Upadhyaya decomposition method assumes the solution into infinite series as
0(x)=> 0i(x) (3.8)
i=0

Using equation (3.8) into equation (3.7), we have

iei () = {ko—l—klx—i—kz (f”z:) 4.tk (%)} +ut {(g—:)um(x)}}
+Au1{(7"6+n>u{f< )}u{iei (x)}}

In general, the recursive relation for the required solution is given by

n+1

0ie1 (2) = U { (L5 YUK (@)} Ui (0)} ], i >
with 0 (2) = {ko + k12 + k2 (5 ) .o+ ko (& )+ {(B”)Z/{{h(ac)}}

4 Numerical Applications

In this section we solve some numerical problems by using the Upadhyaya decomposition method
discussed above in section 3.

Problem 4.1. Consider the following second kind linear Volterra integro-differential equation

a’()_2+x—§—?+/z(:c—t)a(t)dt (4.1)
with
6(0) = 1. (4.2)

Solution: Taking the Upadhyaya transform of both sides of (4.1), we get

u{e’ (w)}-?bl{l}—i—u{m}— U {x }—I—Z/{{/Om(x—t)@(t)dt}

- (2Jun- (2)ow=3()+ () - () ([ -0}

Using (4.2) in (4.3), we have

et = (5) () + () () (ol [ evema] o

Using the convolution theorem of the Upadhyaya transform in

wwen = [(5) v2 (%) + (%) - (%) ?
- [(5)+ () ()-(5)-
éuw<n—[()+2(g)+cgsg(g§)

, we get

) (D) utsuoe]

™2

_|_

(3 )utew)| (45)
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Operating by the inverse Upadhyaya transform on both sides of (4.5), we get

2 gt _
6()f1+2x+571+u1{(53)2/{{0()}} (4.6)
The Upadhyaya decomposition method assumes the solution into the form of an infinite series as
0(x)=> 0i() (4.7)
i=0

Using (4.7) into (4.6), we obtain

gﬂi (z) = 1+2m+£2 4;: +ut {(;)U{iez (m)}}

From the above equation, the recursive relation for the required solution is given by

Gi1 (x) =U {(gg) U {6; (x)}} ,i>0 }

4

With@o(x):1+2x+§_%

Using the above recursive relation, the first few components of 0; () are given as

o) = { (3 uton )
e (G35
(%Z) {u{1}+2U{x}+ ety - gt }H
)G)+(5)+ (%) -(5)]}
{5 {5 e {(5)]
=0, () = (%) o (j,) . (%) _ (%) (4.8)
o = {5 )uton @)
o {(5)u{(5) 2 (%) (5)- ()}
- {Z) (Bt (e - o)
(G [(5) (%) +(5) - ()]
= oeto = [ { () f o2 { (50 fre { ()} {(50))]
~e0= () +2 (%) + (5) - () 9

Using (4.7), the required solution of (4.1) with (4.2) is given by

e fiers (2)+ (3)+(3)+(3) - (8) )+ () |

that converges to the exact solution 0 (x) = z + €°.

——
+
[\l

b
(%)
)

¢
s}
N
~
8
&
I

=)=

=0y (x)=U""

‘ &

[«
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Problem 4.2. Consider the following second kind linear Volterra integro-differential equation

"

0 (ac):l—l-x—l-/z(a:—t)e(t)dt (4.10)

with
0(0)=1,0 (0)=1. (4.11)

Solution: Applying the Upadhyaya transform on both the sides of (4.10), we get

u{a” (x)} =u{1}+U{x}+u{/j (w—t)@(t)dt}

- (2w (#)ewr- (3)o 0 (5)+ () i [ o) e

Using (4.11) in (4.12), we have

et = (5)+ (2 () () (B[ - mow) o

Invoking the convolution theorem of the Upadhyaya transform in (4.13), we get
con=[(9)+(2)+(5) + () () Gataan]
o= [(5)+(2)+(£)+ (%) (2) ) (2o

o= [(5)+(2) - (5) () (B o

Operating now by the inverse Upadhyaya transform on both sides of (4.14), we get

6 (z) =1 T (D Y uge 4.15
(z) = Trtortar T B {6 (2)} (4.15)
The Upadhyaya decomposition method assumes the solution into the form of an infinite series as
0(x)=> 0i() (4.16)
i=0

Substituting (4.16) into (4.15), we have

Zei(m):1+m+”§!+;+u‘1{(g4>u{§9i(x)}}

=0

From the above equation, the recursive relation for the required solution is given by

Oi1 (z) =U" {(g—i)u{ai (x)}}, i>0
With@o(m):1+m+§+%‘?

Using the above recursive relations, the first few components of 6; (z) are given as

o =u {(F)utmor)—u {(T)ufirar o2

=01 (x) =U"" {(g;) {u{u +U{x}+ %U{xQ} + %M{m?’}} }

- = {(5)[(5)(2) - (5) (5]}
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EX (:E)

[ {E ) G () (5]

= 01 (x) = (%) * (%T) " (%T) ! (ai)

e (el () (2) ()
()2t (2o
)
%m[u1{<zf>}+w{<aﬁ>§+w{<mm>

(4.17)

= 05 (.T)

EX’’ (.’E)

(=)}
e ()]
! (%:) " (ﬁ) (4.18)

is given by

=02 (x) = (§> + (—T

Using (4.16), the required solution of (4.10) with (4.1

o= (5)+ (5) (0 (5) + (5)+(5) - (5)(5)

7!

8!
mlo :1;11

that converges to the exact solution 0 (x) = e”

9!

Problem 4.3. Consider the following second kind linear Volterra integro-differential equation

"

0 (x):1+x—2m2—|—/ (z—1)0(t)dt
0
with

6(0) =

(4.19)

50 (0)=1,0" (0)=1 (4.20)
Solution: Applying Upadhyaya transform on both sides of equation (4.19), we get

u{e"’ (m)} Uy +U{a} -2 {2} +U {/Oz (z — )0 (t) dt}

- (Y- () (#)eto- (2)o

-(5)+(3) (3wl [ o)
Using (4.20) in (4.21), we have

2 3 4 5
-uon=5(3) (5) - (5)- (5 (5) (%)
7 *
+<63)Z/{{/0 (z t)@(t)dt}
Using the convolution theorem of Upadhyaya transform in (4.22), we get
_5(2) (@ aj) (fﬁ) (ﬂ“) _ (avf’)
uo@y=s(5)+ (59)+ (%)« (%5)+ 2

55
+ (g—z) (g)u{x}u{e(ﬁ)}

(4.22)

nnnnnnnnnnn
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~uwer=(5) () (%)« (5) (%) (%)
() Q) (3w
~uwey=5(5)+ (7)< (%) + (50) < () 2 (5) + (5)wwoen

Applying the inverse Upadhyaya transform operator on both sides of (4.23), we get

T T

0()—5+m+§+§3+£—4;5+7/1 {(55)1,1{0()}} (4.24)

The Upadhyaya decomposition method assumes the solution to be in the form of an infinite series as

(z) = Z 0i (x) (4.25)

Using (4.25) into (4.24), we obtain

> R A ~° >
;01‘( T) = Stator gty - 5 tU {(65)“{;07;(37)}}}.

From the above equation, the recursive relation for the required solution is given by

em(:c):u*{(g—i)g{e D)} i20 }

with 0o (z) = 5+ @ + 27 + & 4 £ _ 427

Using the above recursive relation, the first few components of 0; () are given by

0@ = { (3 utonen)

Y )
éel(w):{uﬂK% {u{l}“’{“’“m“{ ) g (et} + g {} - 'Z/I{x5}:|}:|
~nw= [ {(5) P (5)+ (7) () (50) « (%) ()]
(S l(5)) o () ()
() e )

s @) GGG ) e
.

oo {(3) {5<zf>+<a>z+)<i>+<z?>+<z?> ()

Lz
= (m):u_l{<%> [( )u{x b+ u{x6}+<%)u{x7}+$u{xs}

U {a _(610')“{1‘10}]}
e ()5

9!

’}
7)+ (5) (%) + (5) -+ (5}
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= o= {(Ge ) o {(F ) oo {(F) e {(5))
{5 ) b {5 )

0y () =5 <%,) n (%) 4 (%) + (%) n (%) 4 (%) (4.27)

Using (4.25), the required solution of (4.19) with (4.20) is given by
x? z3 z! x5 z8 z’ z®
o=t {reas () + (5) + (5) + (5) + (80)+ (7)) + (&)
20 210 S|

that converges to the exact solution 0 (z) = 4 + e”.

5 Conclusion

This study effectively determines the solution to the linear Volterra integro-differential equations of
the second kind by using the Upadhyaya decomposition method. The solutions to the problems under
consideration show that the Upadhyaya decomposition approach can solve the linear Volterra integro-
differential equations of the second kind quickly and with lesser computational efforts. In future we
propose to solve the system of simultaneous linear Volterra integro-differential equations by employing
the Upadhyaya decomposition method.
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