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1. INTRODUCTION 
 

In the recent times Minner [8], Wee et al. [13] and Teng [12] proposed  methods without using derivatives to 

find EOQ and EPQ model. Prior to this Grubbstrom and Erdem [7] also gave some results to evaluate EOQ and 

EPQ model without using derivatives followed by Ronald et al. [11] who introduced a simple method to find the 

shortages level for EOQ and EPQ model. Chang et al. [4] also introduced a simple method to implement the 

Arithmetic Geometric Mean (AGM) inequality to find the same concept in EOQ and EPQ models with and 

without shortages. Cardenas– Barron [2] tried to improve the algebraic method to solve the EOQ and EPQ 

models with backorders and improved the method by replacing their sophisticated algebraic skill. 

Simultaneously he [3] also proposed an optimization approach: the arithmetic-geometric mean (AGM) 

inequality and the Cauchy-Bunyakovsky-Schwarz (CBS) inequality. He used the AGM and CBS inequalities to 
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In this research, we discuss a new method to appraise the EOQ/EPQ with shortages by manipulating 
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derive the EOQ and EPQ models with backorders. Apart from these, the authors [9,10] also introduced the fuzzy 

concepts to those methods to simplify the real life problems. In this paper, we apply AGM inequality and 

Algebraic method to simplify the EOQ and EPQ models with shortages in fuzzy background. The effectiveness 

of the proposed method is illuminated by means of certain numerical examples. 

 

2. PRELIMINARIES  
 

2.1 Definition 

A fuzzy set Ã is defined by Ã= {(x, µA(x)): x∈A, µA(x)∈[0,1] }.  In the pair (x, µA(x)), the first element x belongs 

to the classical set A, the second element µA(x) belongs to the closed interval [0, 1] called the Membership 
function. 

 

2.2 Trapezoidal Fuzzy Number 

A Trapezoidal fuzzy number Ã (shown graphically in the Fig. 1) is denoted as, �� � ���, ��, �	, �
� and is 

defined by the membership function as, 

�
���� �
���
��
�� �� � ������ � ���  for �� � � � ��,           1      for  �� � � � �	,��
 � ����
 � �	�  for �	 � � � �
,0,              otherwise.

# 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

                               Figure 1: Graphical Representation of the trapezoidal number.  

 

2.3 The Fuzzy Arithmetic Operations on Trapezoidal Fuzzy Number under  

Function Principle 

Let �� � ���, ��, �	, �
� and $� � �%�, %�, %	, %
� be two trapezoidal fuzzy numbers with the condition that �� ��� � �	 � �
 and %� � %� � %	 � %
. If �� � �� � �	 � �
 and %� � %� � %	 � %
  then ��  and $�  are crisp 
numbers. Then the fuzzy arithmetic operations under the function principle are given by, 

Addition: �� ) $� � ��� ) %�, �� ) %�, �	 ) %	, �
 ) %
�, where  ��, ��, �	, �
, %�, %�, %	and%
  are  any real numbers. 
Subtraction: �� � $� � ��� � %
, �� � %	, �	 � %�, �
 � %��, where  ��, ��, �	, �
, %�, %�, %	and%
 are any real numbers. 
Multiplication: �� ∙ $� � +min���%�, ��%
, �
%�, �
%
�, min���%�, ��%	, �	%�, �	%	�,max���%�, ��%	, �	%�, �	%	�, max���%�, ��%
, �
%�, �
%
�. 

 If ��, ��, �	, �
, %�, %�, %	and%
 are all nonzero positive real numbers, then �� ∙ $� � ��� ∙ %�, �� ∙ %�, �	 ∙ %	, �
 ∙ %
� 
Scalar Multiplication: 

Let  / ∈ 1, then /�� � �/��, /��, /�	, /�
�;  / 3 0 /�� � �/�
, /�	, /��, /���;  / 4 0 
Division: 

x

�
���� 

0 a1   a2 
a3 

1 

a4 

 
a1



A. Nagoor Gani and U. Mohammed Rafi 

350 

 

Bulletin of Pure and Applied Sciences  

Vol. 38E (Math & Stat.) No.1 / January- June 2019 

 

��$� � 5min +��%� , ��%
 , �
%� , �
%
. , min +��%� , ��%	 , �	%� , �	%	. ,
max +��%� , ��%	 , �	%� , �	%	. , max +��%� , ��%
 , �
%� , �
%
.6 

 If ��, ��, �	, �
, %�, %�, %	and%
 are all nonzero positive real numbers, then ��$� � +��%
 , ��%	 , �	%� , �
%� . 

 

 

2.4 Graded Mean Integration Representation Method 

Defuzzification is a process of transforming fuzzy values to crisp values. Defuzzification methods have been 

widely studied for some years and were applied to fuzzy systems.  The major idea behind these methods was to 

obtain a typical value from a given set according to some specified characters. Defuzzification method provides 

a correspondence from the set of all fuzzy sets into the set of all real numbers. 

Let �� � ���, ��, �	, �
� be a trapezoidal fuzzy number, then the defuzzified value �� using the graded mean 
integration representation method [4] is given by 78��9 � �� ) 2�� ) 2�	 ) �
6  

This method is also used for ranking the triangular fuzzy numbers to choose which is minimum and maximum. 

 

3. Derivation of the optimal lot size and the Shortage level for EOQ/EPQ models with Shortages: 

This section gives the details of  the Algebraic method and the AGM method used to evaluate the optimal 
solutions of EOQ and EPQ models with shortages. The method is created by combining the Algebraic method 

and the Arithmetic Geometric Mean (AGM) inequality.  

The Algebraic Method: Let 1a  and 2a  be two positive real numbers and x  be the decision variable, thus  

1

2

2

2

1

2
12

2

1
42 a

a

a

a
xaxaxa −








−=−

 
The AGM inequality: Let the positive real numbers be 

naaaa ,...,, 321
such that, 

( ) n

n
n aaaa

n

aaaa /1

321
321 .....

...
≥

++++
 the equation holds only if 

1 2 3
... .na a a a= = = =  

Notations: The following notations are used throughout the paper. 

d  The demand rate per unit time  

q  Lot size per order (Production rate) 

1C  Inventory carrying cost (holding cost) 

2C  The shortage cost per item1 

3C  Setup cost per order (Ordering cost) 

k  The production rate per unit time12 

1q
 The shortage level 

 

3.1 The EOQ model with shortages 

The total inventory cost for the EOQ with shortage is of the form 
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where 
1 2 3 4 2 21 22 23 24( , , , ), ( , , , )d d d d d C C C C C= =ɶ ɶ . 
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Applying the Algebraic method in (2), the total inventory cost can be written as 
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(3) has the minimum value when 2
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On applying the AGM method in (5) we get, 
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with the equality holding  iff 
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Or, iff the product of two constant functions is constant. On solving (7), we get the optimal lot size 
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From  (4) we get the optimal shortage level 
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From (6)  we get the optimal total cost  
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where 
1 2 3 4 2 21 22 23 24( , , , ), ( , , , )d d d d d C C C C C= =ɶ ɶ .                  

 

3.2. The EPQ model with Shortages 

Here we take 
k d

k
ρ

−
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ɶ
, the total inventory cost for the EPQ model with shortage is of the form 
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where 
1 2 3 4 2 21 22 23 24( , , , ), ( , , , )d d d d d C C C C C= =ɶ ɶ .  
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Applying the Algebraic method in (9), the total inventory cost can be written as 
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Applying AGM method in (12) we get, 
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iff the product of two constant functions is constant. On solving eqn. (14), we get the optimal lot size 
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From eqn. (11), we get the optimal shortage level 
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From (13), we get the optimal total cost  
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where 
1 2 3 4 2 21 22 23 24

( , , , ), ( , , , )d d d d d C C C C C= =ɶ ɶ .  

 

4. NUMERICAL EXAMPLE 

 

4.1 Problem on EOQ with Shortages: 

 A furniture dealer sells special typist chairs. Each purchase order costs Rs. 50 to the dealer and the 

holding cost amounts to Rs. 80 per chair per year. The dealer sells around 90 chairs per month. He has estimated 

a shortage cost of Rs. 20 per chair per year approximately. 

i. What is the EOQ for the chair? 

ii. When the supply of the chairs comes, how many chairs on an average are expected to be delivered to 
the customer immediately? 

Solution: 

 Here  90=d  Chairs per month. 

  )96,92,88,84(),,,(
~

4321 == ddddd Chairs per month, 

  )1152,1104,1056,1008(= Chairs per year. 
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  80.1 RsC = per chair per year. 

  20.2 RsC =  
per chair per year approximately. 

  )26,22,18,14(),,,(
24232221

== CCCC  

  50.3 RsC =  

i) The optimal ordering quantity is 
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       The defuzzified value is 
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That is, the dealer needs to purchase around 82 chairs. 
ii) The optimal time interval is 
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That is, 106.28365077.0 =× days 

iii) The maximum inventory level is 
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That is, 16 chairs on an average are expected to be delivered to the customer immediately. 
 

4.2 Problem on EPQ with Shortage 

The stockist has to supply around 400 units of a product every Monday to his customers and it can produce 80 
such items per day. He produces at the rate of Rs.50 per unit. The cost of ordering and transportation is Rs.75 
per order. The cost of carrying inventory is estimated at Rs.5 per unit per week approximately. Find  
i.  The economic lot size,  
ii. The optimal total cost and  
iii. The shortage level. 
Solution: 

 Here  400=d units per week, 

  )430,410,390,370(
~

=d per week. 

Holding cost    %81 =C per year of the cost of the product 

  







×=

52

50

100

8 per week 
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  1
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.5C Rs=  per unit per week 
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Production Rate 80.Rsk = per day 

  560.780 Rs=×=  per week. 
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The defuzzified value is  
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ii) The optimum total cost is given by  
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iii) The shortage level is given by  
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5. CONCLUSION 

 
We have two optimization methods to compute the EOQ/EPQ models. These are cost comparisons and AGM 
inequality. However, neither optimization method attempted to derive the optimal shortage level. Main work of 

this paper is to introduce an alternative method for deriving EOQ/EPQ models when shortages are allowed in 
fuzzy environment. Compared to the other methods our proposed method is simple and derives both the optimal 
lot size and the shortage level. This method is also simpler than the algebraic method. Finally this method is 
very simple and accessible to the learning of inventory models in fuzzy environment for the readers who lack 
the knowledge of calculus. 
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