Bulletin of Pure and Applied Sciences.

Vol. 38E (Math & Stat.), No.1, 2019. P.235-244 Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2019.00022.5

# A MATHEMATICAL APPROACH TO FIND THE RELATIONSHIP BETWEEN THE WIENER NUMBERS OF ISOMERS OF PENTANE $(C_5H_{12})$ AND HEXANE $(C_6H_{14})$ AND ITS PHYSICAL PROPERTIES

P. Gayathri<sup>1</sup>, T. Ragavan<sup>2,\*</sup>

### **Authors Affiliation:**

<sup>1</sup>Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamil Nadu 609305, India.

E-mail: pgayathrisundar@gmail.com

<sup>2</sup>Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamil

Nadu 609305, India.

E-mail: tragavanmaths@gmail.com

### \*Corresponding Author

**T. Ragavan**, Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamil Nadu 609305, India.

E-mail: tragavanmaths@gmail.com

Received on 05.02.2019 Revised on 20.04.2019 Accepted on 08.05.2019

### Abstract:

In molecular graph theory, the Wiener index or Wiener number is a topological invariant of a molecule which depends on its structure and it is defined as the sum of the lengths of the shortest paths between every pairs of vertices in the molecular graph representing the non-hydrogen atoms of the molecule. The term isomer is used for molecules having same molecular formula but different structural arrangement of the hydrocarbon main chain and the respective functional groups. In this paper, we prove that there is a high positive correlation between the topological invariants and the physical properties of isomers of Pentane (C5H12) and Hexane (C6H14).

Keywords: Molecular graph, Wiener number, isomers, Pentane, Hexane.

2010 Mathematics Subject Classification: 92E10, 11CXX, 05CXX, 05C07, 05C10, 05C12.

### 1. INTRODUCTION

The applications of graph theory are not restricted only to mathematics. Graph theory and mathematical modelling can be combined to study various chemical phenomena like characterization and identification of chemical compounds. Alkanes are organic chemical compounds that consist only of the elements carbon (C) and hydrogen (H) in proportions according to the general formula:  $C_nH_{2n+2}$  where the letter n represents the number of carbon atoms in each molecule. The atoms that form alkanes are linked exclusively by single bonds, hence alkanes are saturated hydrocarbons.

In general, there are three basic types of alkanes: linear Alkanes, branched alkanes and cyclic alkanes. Of these linear alkanes are the simplest to draw and explain. And therefore this research is restricted to these types of alkanes.

One example of an alkane is hexane, shown in Figure 1. Each carbon atom has four chemical bonds and each hydrogen atom has one chemical bond. Therefore, the hydrogen atoms can be removed without losing information about the molecule. This carbon tree can be represented as a graph by replacing the carbon atoms with vertices. Chemical bonds are then represented as an edge in the graph. Figure 2 shows the graphical representation of hexane composed of six vertices connected by a single edge.

Representation of an object giving information only about the number of elements composing it and their connectivity is named as topological representation of an object. A topological representation of a molecule is called molecular graph.

A molecular graph is a collection of points representing the atoms in the molecule and set of lines representing the covalent bonds.



Figure 1: Carbon tree of hexane



Figure 2: Carbon tree of hexane as a graph

The structure of alkanes determines its physical properties. The well-known and oldest graph matrices are the adjacency matrix, introduced by Poincare for Characterizing of labyrinths [1]. In more Recent time, with the growth of chemical graph theory, additional graph matrices have been introduced like: the wiener matrix [2-7]; the path –Wiener matrix [8]; the Szeged matrix and the revised Szeged matrix [9];the distance matrix [10]. Chemists make use of many quantities associated with molecular graph to estimate various physical properties like melting point, boiling point, etc. The Wiener Index also known as the "sum of distances", is one of the oldest method associated with the process of determining these physical properties. In general, the Wiener Index measures how compact a molecule is for its given weight. It therefore has predictive value and chemists and physicists have found many such uses for the Wiener Index.

### 2. PRELIMINARIES

### 2.1 Wiener Number of a Graph G

For a connected graph G with n vertices, denoted by 1, 2,..., n, let  $W_k = \sum_{i < j, dij = k} d_{ij}$ ,  $k = 1, 2, \ldots$ . The vector  $(W_1, W_2, \ldots)$  is called the Wiener Vector of G, denoted by WV(G). Clearly; the sum of all components of the Wiener vector of G is just equal to the Wiener number of G.

### 2.2 Procedure for finding the $D_M$ – matrix of a graph

### Step 1:

Calculate  $D_S$  –Matrix for the graphs of Hexane isomers where  $D_S$  is the distance matrix and  $R_p$  is the greatest element in the  $p^{th}$  row of  $D_S$ ,  $C_q$  is the greatest element in the  $q^{th}$  column of  $D_S$ .

### Step 2:

Find  $D_M$  – Matrix for the molecular graphs considered by using the conditions below

$$(D_M)_{pq} = (D_S)_{pq} \text{ if } (D_S)_{pq} \ge \min\{R_p, C_q\}$$

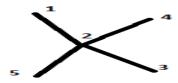
$$(D_M)_{pq} = 0 \quad \text{if } (D_S)_{pq} < \min\{R_p, C_q\}$$

### 2.3 Notations

The number of non-zero entries above the main diagonal in  $D_M$  of smaller alkanes  $(N_E)$ ; the sum of non-zero entries above the main diagonal  $(\sum PD_M)$ ; the quotient  $\sum PD_M / N_E$  giving the average matrix element  $(Q_w)$ ; partition of  $\sum PD_M$  coming from distances of decreasing length  $(\pi_P)$ ; Ordered row sums(P); Wiener number (W),  $P = \sum 2PD_M$ ; Boiling point  $B_p$ ; Melting point  $M_p$ ; Density D.

### 3. MAIN RESULTS

### 3.1 Evaluation of $D_S$ – Matrices and $D_M$ –Matrices


**Pentane** 

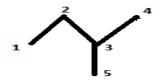


| $D_S$ -Matrix |   |   |   | $D_M$ - Matrix |   |    |  |  |   |   |   |   |   |   |
|---------------|---|---|---|----------------|---|----|--|--|---|---|---|---|---|---|
|               | 0 | 1 | 2 | 3              | 4 | 10 |  |  | 0 | 0 |   |   |   |   |
|               | 1 | 0 | 1 | 2              | 3 | 6  |  |  | 0 | 0 | 0 | 0 | 3 | 3 |
|               | 2 | 1 | 0 | 1              | 2 | 3  |  |  | 2 | 0 | 0 | 0 | 2 | 4 |
|               | 3 | 2 | 1 | 0              | 1 | 1  |  |  | 3 |   | 0 |   |   |   |
|               | 4 | 3 | 2 | 1              | 0 | 0  |  |  | 4 | 3 | 2 | 0 | 0 | 9 |

$$N_E$$
=5,  $\sum PD_M$  =14,  $Q_W$ =2.8,  $\pi_P$ = 1,2,2,  $P=\sum 2PD_M$  = 28,  $W=20$ 

### 2,2 Dimethyl propane (Neopentane)




 $D_S$ -Matrix

$$\begin{pmatrix} 0 & 1 & 2 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 2 & 0 \end{pmatrix} 0$$
 
$$\begin{pmatrix} 0 & 1 & 2 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 2 & 0 \end{pmatrix} 0$$

$$N_E = 10$$
,  $\sum PD_M = 16$ ,  $Q_W = 1.6$ ,  $\pi_P = 6.4$ ,  $P = \sum 2PD_M = 32$   $W = 16$ 

 $D_M$  - Matrix

### 2-Methylbutane



 $D_S$ -Matrix

$$D_M$$
 - Matrix

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 3 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 2 & 3 & 3 \\
0 & 0 & 0 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 2 & 3 & 3 \\
0 & 0 & 0 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 2 & 3 & 3 \\
4 & 2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$N_E$$
=5,  $\sum PD_M$  =12,  $Q_W$ =2.6,  $\pi_P$ = 2,3,  $P = \sum 2PD_M = 24$ ,  $W = 18$ 

### Table 1:

| Alkanes               | Diagram | W  | P  | <b>Boiling point</b> | Melting point | Density                 |
|-----------------------|---------|----|----|----------------------|---------------|-------------------------|
| Pentane               | 1 2 4 5 | 20 | 28 | 309.25K              | 143.3K        | 626Kg/m <sup>3</sup>    |
| 2,2 -Dimethyl propane | 5 22 4  | 16 | 32 | 282.65K              | 256.6K        | 601.17Kg/m <sup>3</sup> |
| 2-Methyl butane       | 1 2 4   | 18 | 24 | 300.95K              | 112.1K        | 616Kg/m <sup>3</sup>    |

Table 2:

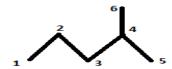
| Chloroalkane                        | Diagram   | W  | P  | Boiling<br>point | Melting<br>point | Density                   |
|-------------------------------------|-----------|----|----|------------------|------------------|---------------------------|
| 1ChloroPentane                      | 2 4 cl    | 20 | 28 | 380.35K          | 174.15K          | 0.9g/cm <sup>3</sup>      |
| 1Chloro<br>2,2 -Dimethyl<br>Propane | 5 2 d d d | 16 | 32 | 357.15K          | 253.15K          | 0.85<br>g/cm <sup>3</sup> |
| 2 Chloro 2-Methyl<br>butane         | 1 cl 3 5  | 18 | 24 | 358.15K          | 200.15K          | 0.87<br>g/cm <sup>3</sup> |

### 3.2 Evaluation of $D_S$ – Matrices and $D_M$ –Matrices of Hexane Isomers

Hexane



### $D_S$ -Matrix


## $D_M$ - Matrix

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 2 & 3 & 4 \\ 2 & 1 & 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 & 1 & 2 \\ 4 & 3 & 2 & 1 & 0 & 1 \\ 5 & 4 & 3 & 2 & 1 & 0 \end{pmatrix} \begin{matrix} 15 \\ 10 \\ 6 \\ 3 \\ 3 \\ 4 \end{matrix}$$

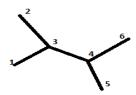
$$\begin{pmatrix}
0 & 0 & 0 & 3 & 4 & 5 & 12 \\
0 & 0 & 0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 & 0 & 3 & 3 \\
3 & 0 & 0 & 0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0 & 0 & 0 & 4 \\
5 & 4 & 3 & 0 & 0 & 0 & 12
\end{pmatrix}$$

$$N_E$$
=5,  $\sum PD_M$  =19,  $Q_W$ =3.8,  $\pi_P$ = 1,2,2,  $P$ =  $\sum 2PD_M$  = 38  $W$  = 35

### 2-Methylpentane



### $D_S$ - Matrix

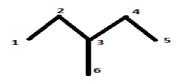

### $D_M$ - Matrix

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 4 \\
1 & 0 & 1 & 2 & 3 & 3 \\
2 & 1 & 0 & 1 & 2 & 2 \\
3 & 2 & 1 & 0 & 1 & 1 \\
4 & 3 & 2 & 1 & 0 & 2 \\
4 & 3 & 2 & 1 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 2 & 3 & 4 & 4 \\
0 & 0 & 0 & 0 & 3 & 3 \\
2 & 0 & 0 & 0 & 2 & 2 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 3 & 2 & 0 & 0 & 0 \\
4 & 3 & 2 & 0 & 0 & 0
\end{pmatrix}$$

$$N_E$$
=8,  $\sum PD_M$  =23,  $Q_W$  = 2.875,  $\pi_P$ = 2,3,3,  $P = \sum 2PD_M$  = 46  $W = 32$ 

### 2, 3-Dimethylbutane




### $D_S$ -Matrix

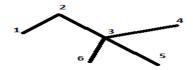
### $D_M$ - Matrix

$$N_E$$
=8,  $\sum PD_M$  =20,  $Q_W$ = 2.5,  $\pi_P$ = 4,4,  $P = \sum 2PD_M$  = 40,  $W$ = 29

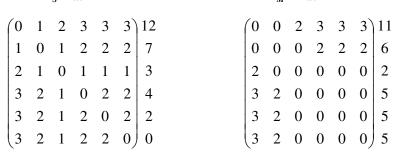
### 3-Methylpentane



### $D_S$ -Matrix


### $D_M$ - Matrix

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 3 & 13 \\
1 & 0 & 1 & 2 & 3 & 2 & 8 \\
2 & 1 & 0 & 1 & 2 & 1 & 4 \\
3 & 2 & 1 & 0 & 1 & 2 & 3 & 3 \\
4 & 3 & 2 & 1 & 0 & 3 & 3 & 3 \\
3 & 2 & 1 & 2 & 3 & 0 & 0
\end{pmatrix}$$


$$\begin{pmatrix}
0 & 0 & 2 & 3 & 4 & 3 & 12 \\
0 & 0 & 0 & 0 & 3 & 0 & 3 \\
2 & 0 & 0 & 0 & 2 & 0 & 4 \\
3 & 0 & 0 & 0 & 0 & 0 & 3 & 3 \\
4 & 3 & 2 & 0 & 0 & 3 & 0 & 12 \\
3 & 0 & 0 & 0 & 3 & 0 & 0 & 6
\end{pmatrix}$$

$$N_E$$
=7,  $\sum PD_M$  =20,  $Q_W$ =2.8571,  $\pi_P$ = 1,4,2,  $P$ =  $\sum 2PD_M$  = 40  $W$  = 31

### 2,2-Dimethylbutane



### $D_S$ -Matrix



### $D_M$ - Matrix

$$\begin{pmatrix}
0 & 0 & 2 & 3 & 3 & 3 \\
0 & 0 & 0 & 2 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$N_E$$
=7,  $\sum PD_M$  =17,  $Q_W$ =2.4285,  $\pi_P$ = 3,4,  $P = \sum 2PD_M$  = 34  $W = 28$ 

Table 3:

| Alkanes            | Structure        | W  | P  | Boiling point(B <sub>P</sub> ) |
|--------------------|------------------|----|----|--------------------------------|
|                    |                  |    |    |                                |
| Hexane             | 1 2 4 6<br>1 5 6 | 35 | 38 | 341.15K                        |
| 2-Methyl pentane   | 6-               | 32 | 46 | 333.15K                        |
|                    | 2 3 4 5          |    |    |                                |
| 2,3-Dimethylbutane | 3 3 5            | 29 | 40 | 331.05K                        |
| 3-Methylpentane    | 1 3 5 5 6 F      | 31 | 40 | 336.15K                        |
| 2,2-Dimethylbutane | 1 3 4 5          | 28 | 34 | 322.85K                        |

Table 4:

| Chloroalkanes | Structure | Boiling point (B <sub>P</sub> ) | W  | P  | $M_{P}$ | D    |
|---------------|-----------|---------------------------------|----|----|---------|------|
| 2Chlorohexane | 2 4 6 cl  | 398.15K                         | 35 | 38 | 238.05  | 0.87 |

| 1Chloro 2-<br>Methyl Pentane    | 2 4 5 5 cl   | 398.15K | 32 | 46 | 238.05 | 0.88 |
|---------------------------------|--------------|---------|----|----|--------|------|
| 1 Chloro 2,3-<br>Dimethylbutane | 2<br>3 60 cl | 390.85K | 29 | 40 | 238.05 | 0.9  |
| 3 Chloro 3-<br>Methylpentane    | 2 4 5 6 6    | 387.55K | 31 | 40 | 238.05 | 0.9  |
| 3 chloro 2,2-<br>Dimethylbutane | 1 3 4 6 5 5  | 384.15K | 28 | 34 | 272.15 | 0.9  |

### 4. CONCLUSION

The comparative study between the various physical properties and the topological invariants of pentane and hexane is performed. The Correlation coefficient 'r' between Weiner Number W and Boiling Point  $B_P$  of alkanes of Pentane is 0.98; Correlation coefficient 'r' between Weiner Number W and D of alkanes of Pentane is 1.0; Correlation coefficient 'r' between Weiner Number W and Melting point  $M_P$  of alkanes of Pentane is 0.94; Correlation coefficient 'r' between Weiner Number W and  $B_P$  of Chloroalkanes is 0.88; Correlation coefficient 'r' between P and P of Chloroalkanes is 0.65; Correlation coefficient 'r' between Weiner Number P and P of Chloroalkanes is 0.8; Correlation Between Weiner Number and Boiling Point of Hexa-alkanes is 0.9; Correlation Between Weiner Number and Boiling Point of Hexa-Chloroalkanes is 0.82. From the above process it can be seen that the topological invariants play a vital role in the study of the physical properties of compounds and their pharmaceutical inventions.

#### REFERENCES

- [1]. Poincare, H. (1900). Second complement. A Journal of Analysis Situs, Proc. London Math. Soc, 32, 277-308.
- [2]. Wiener, H. (1947). Structural determination of paraffin boiling points. J. Am. Chem. Soc, .69, 17-20.
- [3]. Wiener, H. (1948). vapor pressure-temperature relationships among the branched paraffin hydrocarbon, *J. Phy Chem.*, 52, 425-430.
- [4]. Wiener, H. (1948). Relation of physical properties of the isomeric alkanes to molecular structure. Surface tension, specific dispersion, and critical solution temperature in aniline. *J. Phy Chem.*, 52, 1082-1089.
- [5]. Graovac, A. and Pisanki, T. (1991), On the wiener index of a graph, J. Math. Chem., 8. 53-62.
- [6]. Randic. M. (1993). Novel molecular descriptor for structure-property studies *J. Chem. Phys. Lett.* 211, 478-483.
- [7]. Gutman, I. (1994). A formula for the wiener number of trees and its extension to graphs containing cycles, *Graph theory Notes New York*, 27, 9-15.
- [8]. Gutman, I. and Klavzar, S. (1995), An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, *J. Chem. Inf. Comput. Sci.*, 35, 1011-1014
- [9]. Pisanki, T. and Randic, M. (2010). Use of the Szeged index and the revised Szeged index for measuring network bipartivity, *Discr. Appl. Math.*,158,1936-1944.
- [10]. Randic, M., Kleiner, A.F. and DeAlba, L.M. (1994). Distance matrices, *J. Chem. Inf. Comput. Sci.*, 34, 277-286.
- [11]. Gayathri, P. and Subramanian, K.R. (2016). The PI (Padmakar-Ivan) Index of Polyominoes, *International Journal of Discrete Mathematics*, (Science Publishing Group), 1(1), 1-4.
- [12]. Gayathri, P., Priyanka, U., Sandhiya, S., Sunandha, S. and Subramanian, K.R. (2017). M-Polynomials of Penta-Chains, *Journal of Ultra Scientist of Physical Sciences*, 29(4), 164-168.
- [13]. Gayathri, P., Priyanka, U. and Sandhiya, S. (2017). A significant computation for finding PI index of Phenylene, *Journal of Ultra Chemistry*, 13(3), 60-69.
- [14]. Gayathri, P. and Priyanka, U. (2017). Degree Based Topological Indices of Banana Tree Graph, International Journal of Current Research and Modern Education, Special Issue NCETM (2017), 13-24.
- [15]. Gayathri, P. and Ragavan, T. (2017). Wiener Matrix Sequence, Hyper-Wiener Vector, Wiener Polynomial Sequence and Hyper-Wiener Polynomial of Bi-phenylene, *International Journal of Innovative Research in Science Engineering and Technology*, 6(8), 16998-17005.
- [16]. Gayathri, P. and Priyanka, U. (2017). Degree based topological indices of Jahangir graphs, International Journal of Current Advanced Research, 6(11), 7154-7160.
- [17]. Gayathri, P. and Ragavan, T. (2017). Wiener Vector, Hyper-Wiener Vector, Wiener number, Hyper-Wiener number of molecular graphs, *Annals of Pure and Applied Mathematics*, 15 (1), 51-65.
- [18]. Gayathri, P. and Priyanka, U. (2017). Degree Based Topological Indices of zig-zag chain, *Journal of Mathematics and Informatics*, Vol. 11, 83-93.
- [19]. Raju, Immadesetty Pothu (2014). Highly Correlated Wiener Polarity Index: A model to predict log *P*, *International Journal of Advances in Applied Sciences*, Vol. 3, 9-24.
- [20]. Behmaram, A. and Yousefi-Azari, H. (2011). Further Results on Wiener Polarity Index of Graphs, *Iranian Journal of Mathematical Chemistry*, Vol. 2, 67-70.