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1. INTRODUCTION 

 

One of the most important problems in fuzzy topology is to obtain an appropriate concept of fuzzy metric space. 

This problem has earlier been investigated by many different authors from different viewpoints.  In 1975, 

Kramosil and Michalek [13] introduced the concept of fuzzy metric space. George and Veeramani [4] modified 

the concept of fuzzy metric space. Later, Gregori and Romaguera[8] proved that the topological space induced 

by the fuzzy metric is metrizable. The new version of fuzzy metric is more restrictive, but it determines the class 

of spaces that are connected with the class of metrizable topological spaces. So it is interesting to study the new 

version of the fuzzy metric. Many contributions to the study of fuzzy metric spaces can be found in [5]-[7], [10], 

[12], [14]-[18], [20], [21].Rodriguez- Lo’pez and Romaguera [19] gave a construction of the Hausdorff fuzzy 
metric on the set of non- empty compact sets.  

 

Recently Ahmed et al. [1] introduced the definition of 2-fuzzy metric space. A natural problem that arises in this 

field is to introduce an appropriate notion of completeness and construct a satisfactory theory of completion of 

2-fuzzy metric spaces. 

 

In this paper we give a satisfactory notion of completeness and propose a construction of completion of  the 

Hausdorff induced 2-fuzzy metric spaces on the family of non empty finite sets. Moreover we obtain necessary 
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Abstract 

In this paper the concept of completeness induced by the Hausdorff metric is studied and the  2-fuzzy 

compactness induced by the Hausdorff metric is also discussed. 
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and sufficient condition for the Hausdorff 2-fuzzy metric spaces on the family of non empty compact sets to be 

complete. 

 

 

2. PRELIMINARIES 

 

Definition 2.1: 

A binary operation ∗∶ �0,1� × �0,1� → �0,1� is a t-norm if it satisfies the following conditions 

(i) ∗ is associative and commutative. 

(ii) ∗ is continuous. 

(iii) 
 ∗ 1 = 
 for all 
 ∈ �0,1�. 
(iv) 
 ∗ � ≤ � ∗ � whenever 
 ≤ � and � ≤ � and 
, �, �, � ∈ �0,1�. 
Definition 2.2: 

A 3-tuple (ℱ(��, �,∗�  is said to be a 2-fuzzy metric space if ℱ(�� is  the set of all fuzzy sets on �, ∗ is the 

continuous t-norm and � is a fuzzy set on ℱ(�� × ℱ(�� × (0, ∞� satisfying  the following conditions for all 

�, �, ℎ ∈ ℱ(�� and �, � ∈ (0, ∞�. 

(i) �(�, �, �� > 0. 
(ii) �(�, �, �� = 1 if and only if   � = �. 
(iii) �(�, �, �� = �(�, �, ��. 
(iv) �(�, �, �� ∗ �(�, ℎ, �� ≤ �(�, ℎ, � + ��. 
(v) �(�, �, . � is  a continuous function from (0, ∞� to �0,1�. 
Definition 2.3: 

Let (ℱ(��, �,∗)  be a 2-fuzzy metric space and  ∈ (0,1�, the open ball !(�,  , �� is defined as a set of all 

� ∈ ℱ(�� such that �(�, �, �� > 1 −   where � > 0. 

Definition 2.4: 

(i) Let (ℱ(��, �,∗)  be a 2-fuzzy metric space. A sequence {�$} is said to be a Cauchy sequence if for each 

 ∈ (0,1� and � > 0 there exists a natural number & such that �(�$, �' , �� > 1 −   for all  (, ) ≥ &. 

(ii) Let (ℱ(��, �,∗)  be a 2-fuzzy metric space. A sequence {�$} is said to converge to � if for each 

 ∈ (0,1� and � > 0 there exists & such that   �(�$ − �, �� > 1 −    for all ( ≥ &. 

(iii) (ℱ(��, �,∗)  is said to be complete if every Cauchy sequence in ℱ(�� is convergent. 

3. HAUSDORFF FUZZY METRIC ON +(,� 

Theorem  3.1: 

Given a 2-fuzzy metric space (ℱ(��, �,∗). Let {�$} and {�$} converge to � and � respectively then 

�(�$ , �$, �� = �(�, �, ��. 

Theorem  3.2: 

Let  (ℱ(��, �,∗)  be a 2-fuzzy metric space. Let - be a closed subset of ℱ(��. If {�$} converges to � and if 

�$ ∈ - for all (  then � ∈ -. 

Definition 3.3: 

Let (ℱ(��, �,∗)  be a complete 2-fuzzy metric space and let .(�� be the set of all non empty 2-fuzzy compact 

subsets of ℱ(��. 

Define �(�, Β, �� =  �(�, �, ��0∈1
234

 

�(Β, f, �� =  �(�, �, ��0∈1
234   for all � ∈ ℱ(�� and 6 a subset of ℱ(��. 
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For -, ! ∈ .(��, define the 2-fuzzy hausdorff metric on .(�� as a function  

 7: .(�� × .(�� × (0, ∞� → �0,1�    by 

7(-, !, �� = min<  �(�, !, ��=∈>
?$= ,  �(-, �, ��0∈1

?$= @. 
Definition 3.4: 

  Define   �A(�, !, �� =  �(�, �, ��0∈1
234

 

�∗(-, !, �� =  �′(�, !, ��=∈>
?$=

 

and the 2-fuzzy Hausdorff metric on .(�� is a mapping  

7: .(�� × .(�� × (0, ∞� → �0,1� defined by  

 7(-, !, �� = min {�∗(-, !, ��, �∗(!, -, ��}. 

Theorem 3.5: 

Let � ∈ ℱ(�� and -, !, C  be elements in .(�� then  

(1) �A(�, !, �� = 1   iff � ∈ !. 

(2) �∗(-, !, �� = 1 iff - ⊆ !. 

(3) There exists �= ∈ ! such that �A(�, !, �� = �(�, �= , ��. 

(4) There exists �∗ ∈ - and �∗ ∈ ! such that �∗(-, !, �� = �A(�∗, �∗, �� 

(5) If  - ⊆ ! then �A(�, !, �� ≥ �A(�, -, ��. 

(6) If ! ⊆ C then �∗(-, C, �� ≥ �∗(-, !, ��. 
(7) �∗(- ∪ !, C, �� = max {�∗(-, C, ��, �∗(!, C, ��} 

(8) �∗(-, !, �� ≥ �∗(-, C, �� ∗ �∗(C, !, ��. 
Theorem 3.6: 

The set .(�� with the Hausdroff metric 7 defines a fuzzy metric space. 

Theorem 3.7: 

Given - ∈ .(�� and H a positive number in (0,1�, then - + H defined by 

 - + H = {� ∈ ℱ(�� ∶  �A(�, -, �� > 1 − H}  is closed.  

Proof: 

Let - ∈ ℱ(��  and H ∈ (0,1�. If � is a limit point of - + H then there exists a sequence  {�$} in - + H converging 

to �.  

By definition, �A(�$, -, �� > 1 − H for all (. 

By property (3) of theorem (3.5) for each ‘(’ there exist �$ ∈ - such that  

                                                          �A(�$ , -, �� = �A(�$ , �$, �� > 1 − H, ∀ ( . 

Since - ∈ .(��, - is sequentially compact and so {�$} in - has a convergent subsequence {�$J} converging to 

� and so the subsequence {�$J} converges to �. By theorem (3.1),  �AK�$J , �$J, �L = �A(�, �, �� > 1 −
H   as   �$J → � and �$J → �. By definition of  �A(�, -, ��, we conclude that �A(�, -, �� > 1 − H. 

Thus � ∈ - + H and since � is an arbitrary limit point of - + H, it follows that - + H is closed and it contains all 

its limit points. 

. 
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Theorem 3.8: 

Suppose that -, ! ∈ .(�   �and H > 0. Then 7(-, !, �� > 1 − H if and only      

if  - ⊆ ! + H  and  ! ⊆ - + H. 

Proof:  

Suppose ! ⊆ - + H, then �A(�, -, �� > 1 − H for every � ∈ ! which implies �∗(!, -, �� > 1 − H.  

Suppose �∗(!, -, �� > 1 − H then for every � ∈ ! by definition,  

�∗(!, -, �� = M(�
� ∈ !�A(�, -, �� > 1 − H 

i.e.,  �A(�, -, �� > 1 − H. 

From the definition of - + H we conclude that B ⊆ - + H and by repeating the same argument as above we get 

7(-, !, �� > 1 − H if and only if - ⊆ ! + H. 

Lemma 3.9: 

Let {-$} be a Cauchy sequence in .(��. If {�$J} is a Cauchy sequence in ℱ(�� for �$J ∈ -$J, then there exists 

a Cauchy sequence {�$} in ℱ(�� such that �$ ∈ -$ for all ( and �$J = �$J for all O. 

Proof: 

Let <�$J@ be a Cauchy sequence in ℱ(��, where �$J ∈ -$J for all O. 

By property (3) of theorem (3.5) choose �$ ∈ -$ such that  

 �AK�$J , -$, �L = �K�$J , �$, �L  for   (PQR < ( < (P . 

By definition of  � and �A,  

�K�$J , �$, �L = �A(�$J , -$, �� 

> �∗(-$J , -$, �� 

> 7K-$J, -$ , �L. 
Since,  �$J ∈ -$J,    �K�$J , �$J , �L = �A(�$J , -$J , ��  = 1. 

It follows that �$J = �$J for all O. Let H ∈ (0,1�, since {�$J} is a Cauchy sequence in ℱ(��, there exists a 

natural number T such that  

  � U�$J , �$V , �W > (1 − H�  for all O, X ≥ T. 

Again since {-$} is a Cauchy sequence in .(��, there exists a positive integer & ≥ (P  such 

that   7(-$, -' , �� > (1 − H� for all ), ( ≥ & . 

Consider �(�$, �' , �� ≥ �K�$, �$J , �L ∗ � U�$J, �$V , �W ∗ �(�$V , �' , �� 

                        = �AK�$J , -$ , �L ∗ � U�$J , �$V , �W ∗ �A(�$V , -' , �� 

> �∗K-$J , -$ , �L ∗ � U�$J, �$V , �W ∗ �∗(-$V , -' , �� 
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> 7K-$J , -$, �L ∗ � U�$J , �$V , �W ∗ 7 U-$V , -' , �W > (1 − H� ∗ (1 − H� ∗ (1 − H� = 1 − H 

Hence {�$} is a Cauchy sequence in ℱ(�� such that �$ ∈ -$ for all ( and �$J = �$J for all O. 
Lemma 3.10: 

Let {-$} be a sequence in .(��. Let - be the set of all points � ∈ ℱ(�� such that there is a sequence {�$} that 

converges to � and satisfies �$ ∈ -$ for all (. If {-$} is a Cauchy sequence then the set - is closed and empty. 

Proof:  

Suppose - is non empty. Since {-$} is a Cauchy sequence there exists an integer (R  such that KH ∈ (0,1�, H =
Y
Z�. 

7(-$, -' , �� > 1 − R
[  for all ), ( ≥ (R .  Choose ([ > (R such that  

7(-$, -' , �� > 1 − H[   for all ), ( ≥ ([ . 

Continuing in this way there exists an increasing sequence {(P} such that 

   7(-$, -' , �� > 1 − HP  for all ), ( ≥ (P . 

Let �$Y  be a fixed point in -$Y . 

By property (3) of the Theorem (3.3) choose �$Z ∈ -$Z such that 

 �AK�$Y , -$Z , �L = �(�$Y, �$Z, ��. 

Again by definition of  �, �A , �∗ and 7 we get  

�K�$Y , �$Z , �L = �AK�$Y , -$Z , �L 

> �∗K-$Y , -$Z, �L 

                      ≥ 7K-$Y, -$Z , �L 

> 1 − H. 
Similarly, choose �$_ ∈ -$_such that  

 
�K�$Z , �$_ , �L = �AK�$Z , -$_ , �L 

                        ≥ �∗K-$Z , -$_ , �L 

> 7K-$Z, -$_ , �L 

> 1 − H[. 
Likewise construct a sequence {�$J} for each �$J ∈ -$J for all O.  

�K�$J , �$J`Y , �L = �AK�$J, -$J`Y , �L 

                                                                      ≥ �∗K-$J , -$J`Y , �L 

> 7K-$J , -$J`Y , �L 

> 1 − HP . 
As HP = R

[J  → 0 as O → ∞ we get,  

�K�$J , �$J`Y, �L → 1  as a result {�$J} is a Cauchy sequence.  
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By lemma (3.9), since <�$J @ is a Cauchy sequence and �$J ∈ -$J there exists a Cauchy sequence {�$} in ℱ(�� 

such that �$ ∈ -$ for all (  and �$J = �$J for all O. 

As (ℱ(��, �,∗� is a complete 2-fuzzy metric space, the Cauchy sequence {�$} converges to � in ℱ(��. Since 

�$ ∈ -$ and {�$} converges to �, by the definition, � ∈ - which indicates that - is non empty. 

It is left to prove that - is closed. Assume � is a limit point of - there exists a sequence {�a} in - converging to 

�. 

Since  �a ∈ -, there exists a sequence {�$} such that {�$} converges to �a  and �$ ∈ -$ for each (. 

Hence there exists (R  such that ℎ$R ∈ -$R and �Kℎ$R, �R , �L > 1 −   where  ∈ (0,1� in particular,   = R
[. 

Again for ([ > (R choose ℎ$ [ ∈ -$ [ such that �Kℎ$[, �[ , �L > 1 −  [. 
On repeating this procedure choose an increasing sequence of integers {(P} such that  

                             �Kℎ$ P , �P , �L > 1 −  P. 

                                     Thus �Kℎ$P , �, �L ≥ �Kℎ$P , �P , �L ∗ �(�P , �, �� 

> (1 −  P� ∗ �(�P , �, �� 

As {�P} converges to �, it follows that �(�, �, �� > 1 −  b . 

Hence {ℎ$P} converges to �, as every convergent sequence is a Cauchy sequence, {ℎ$ P} is a Cauchy sequence 

where ℎ$ P ∈ -$P. 
By lemma (3.9), there exists a Cauchy sequence, {�$} in ℱ(�� such that �$ ∈ -$ and  �$P = ℎ$ P. Thus � ∈ - 

and so - is closed. 

Lemma 3.11: 

Let {C$} be a sequence of 2- fuzzy totally bounded sets in ℱ(�� and - be a subset of ℱ(��. If for H ∈ (0,1� 

there exists a natural number & such that - ⊆ Cc + H then - is 2-fuzzy totally bounded. 

Proof:  

Let H ∈ (0,1�, choose & such that - ⊆ Cc + H. Given that  Cc  is a 2-fuzzy totally bounded then 

Cc ⊆ d !(�? , H, ��
$

?eR
. 

On reordering �? , assume !(�? , H, �� ∩ - is nonempty for 1 ≤ M ≤ ) and !(�? , H, �� ∩ - is empty for ) < M. 
So choose �? ∈ !(�? , H, �� ∩ - for 1 ≤ M ≤ ). 
Suppose � ∈ -, then � ∈ gc + H and so �A(�, gc, �� > 1 − H, by property (3) of  Theorem (3.3) there exists 

ℎ ∈ gc such that  

�(ℎ, �, �� = �A(�, gc, �� 

and   �(�, �? , �� ≥ �(�, ℎ, �� ∗ �(ℎ, �? , �� 

> (1 − H� ∗ (1 − H� 

= 1 − H 

Hence, � ∈ !(�? , H, �� for some 1 ≤ M ≤ ). 
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Also �? ∈ !(�? , H, �� ∩ - implies that �(�? , �? , �� > 1 − H. 

Therefore,  �(�, �? , �� ≥ �(�, �? , �� ∗ �(�? , �? , �� 

> (1 − H� ∗ (1 − H� 

                                                                           = 1 − H.  

Hence for each � ∈ -, we get �? such that � ∈ !(�? , H, �� for 1 ≤ M ≤ ). 

We conclude that  

               - ⊆ d !(�? , H, ��
'

?eR
 

which implies - is 2-fuzzy totally bounded. 

Theorem 3.12: 

If (ℱ(��, �,∗� is complete then (.(��, 7,∗� is complete. 

Proof: 

Consider a Cauchy sequence {C$} in .(��and define a 2-fuzzy set C to consist of all � ∈ ℱ(�� such that there 

exists {�$} converging to � such that �$ ∈ C$  for all (. Our aim is to prove that C ∈ .(�� and {C$} converges to 

C. By lemma (3.9), C is closed and nonempty.  

  For given H ∈ (0,1�, � ∈ (0,1� there exists a positive integer & such that 

                                      7(C$ , C' , �� > 1 − H for all ), ( ≥ &. 
By theorem (3.6), 7(C$ , C' , �� > 1 − H if and only if C' ⊆ C$ + H for all ) > ( ≥ &. 

Let � ∈ C, there exists {�?} in C? converging to �. By the Theorem (3.5) C$ + H is closed and �? ∈ C$ + H implies 

that � ∈ C$ + H. Hence C ⊆ C$ + H. By Lemma (3.9) C is a 2-fuzzy totally bounded.  C is a complete fuzzy 

metric space as C is a closed. Since C is  nonempty, 2-fuzzy complete and totally bounded thus C is 2-fuzzy 

compact and thus C ∈ .(��. 

Let H ∈ (0,1�, to show that {C$} converges to C ∈ .(��.  

i.e., 7(C$ , C, �� > 1 − H for all ( ≥ &. 

In order to prove this, we have to show that  C ⊆ C$ + H and  C$ ⊆ C + H by above discussion, C ⊆ C$ + H for 

all ( ≥ &. 

To prove the reverse inclusion let H ∈ (0,1� and & be a positive integer such that  

                             7(C' , C$, �� > 1 − H  for all ), ( ≥ & since {C$} is a Cauchy sequence. 

There exists a strictly increasing sequence {(?} of positive integers such that  

7(-' , -$ , �� > R
[h`Y (1 − H� for all ), ( ≥ (?  by property (3) of theorem (3.5) we get,   

                                       C$ ⊆ C$Y + H, there exists �$Y ∈ C$Y  such that  �(�, �$, �� > 1 − H. 

As C$Y ⊆ C$Z + H, there exists �$Z ∈ C$Z  such that �K�$Y , �$Z , �L > 1 − H. 

Again, C$Z ⊆ C$_ + H, there exists �$_ ∈ C$_ such that �K�$Z , �$_ , �L > 1 − H. 
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By continuing this process we obtain a sequence {�$h} such that for all positive integers M then �$h ∈ C$hand 

�K�$h , �$h`Y , �L > R
[h`Y (1 − H�, by the Theorem (3.2) we find {�$h } is a Cauchy sequence the limit ‘�’ of the 

sequence {�$h} is in C, by Lemma (3.9).  

Also  �K�, �$h , �L ≥ �(�, �$, �� ∗ �K�$Y , �$Z , �L ∗ … ∗ �K�$hjY , �$h , �L 

> (1 − H� ∗ (1 − H� ∗ … ∗ (1 − H� > (1 − H� 

It follows that �(�, �, �� > (1 − H� and therefore, � ∈ C + H. Thus C$ ∈ C + H  and there exists & such that 

7(C$, C, �� > (1 − H� for all ( ≥ &. Thus {C$} converges to C ∈ .. Hence if (ℱ(��, �,∗� is complete then 

(.(��, 7,∗� is 2-fuzzy complete metric space. 

Theorem 3.13: 

If (ℱ(��, �,∗� is 2-fuzzy compact then (.(��, 7,∗� is 2-fuzzy compact. 

Proof: 

By the Theorem (3.12), .(��is 2-fuzzy complete, it is enough to show that .(�� is 2-fuzzy totally bounded. 

For H ∈ (0,1� there exist �? ∈ ℱ(�� such that  

ℱ(�� ⊆ d !(�? , H, ��
$

?eR
 . 

Consider {gk: 1 ≤ O ≤ 24 − 1} a collection of all balls !(�? , H, ��. Since ℱ(�� is compact, each  gk is compact 

and so gk ∈ .(��. 

To prove that                                        

            .(�� ⊆ d !(gk, H, ��
[mQR

PeR
 . 

Let C ∈ .(��, to show that C ∈ !(gk, H, ��. 

Choose no = {M: C ∩ gk ≠ ∅} and for X choose  

ga = d gk
k∈rs

 

By property (2) of the Theorem (3.3), �∗KC, ga , �L = 1.  

Let O ∈ ga  then there exists some M ∈ no  and ℎ ∈ C such that O, ℎ ∈ gk  hence, �A(O, C, �� ≥ 1 − H. As O is 

arbitrary, �AKga , C, �L > 1 − H. 

Hence 7KC, ga , �L = �∗Kga , C, �L > 1 − H and thus C ⊆ ga, so .(�� is totally bounded. Therefore .(�� is 

complete and totally bounded, hence (.(��, 7� is 2-fuzzy compact.  
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