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1. INTRODUCTION  

 

The name Hadamard matrix came after the name of Jacques Hadamard, a French mathematician. A Hadamard 

matrix H of order n n×  is a matrix with entries 1 and -1 such that ,T T

n
H H HH nI= = where 

TH is the 

transpose of H and n
I is the Identity matrix of order .n This means that the dot product of any two distinct 

rows or columns of H is equal to zero. That is, any two distinct rows or columns are orthogonal. Hadamard 

matrix is non-singular and the determinant of the Hadamard matrix of order n is 2 .
n

n  Symmetric Hadamard 

matrices are known as Standard Hadamard matrices, and they are denoted by 
0 1 2
, , , ,H H H ⋯ where 

0
H  is of 

order 1 1,×  1H is of order 2 2× , 2H  is of order 4 4,× 3H  is of order 8 8,×  and so on.  

Author Affiliation:  
1
Department of Mathematics, Andhra Loyola College, Vijayawada, Andhra Pradesh 520008, India 

E-mail: raman93in@gmail.com 
2
Department of Mathematics, Andhra Loyola College, Vijayawada, Andhra Pradesh 520008, India 

E-mail: gmvictorsj@gmail.com 
3
Department of Mathematics, Andhra Loyola College, Vijayawada, Andhra Pradesh 520008, India 

E-mail: venugopalparuchuri@gmail.com 
4Department of Mathematics, Andhra Loyola College, Vijayawada, Andhra Pradesh 520008, India 

E-mail: mariadas197475@gmail.com 

 

*Corresponding Author:  

N.V. Ramana Murty, Department of Mathematics, Andhra Loyola College, Vijayawada, Andhra 

Pradesh 520008, India  

E-mail: raman93in@gmail.com 

 

 Received on 04.12.2018,     Revised on 19.02.2019 Accepted on 20.03.2019 

Abstract: Hadamard matrices are a special class of square matrices with entries 1 and -1 only. They have 

many applications in Coding Theory, Physics, Chemistry and Neural networks. Therefore, this paper makes 

an attempt to study Hadamard matrices and their connection with Group Theory. Especially, we concentrate 

on the Symmetry groups of Standard Hadamard matrices 0 1 2 3
, , ,H H H H  and 4

.H  It is shown that the 

Symmetry group of the Standard Hadamard matrices 0H  and 1H  is the trivial group and that of 2H  is 

isomorphic to the Permutation group 3
.S Since Symmetry group of the Standard Hadamard matrix n

H  is 

isomorphic to the General linear group of n n×  invertible matrices over the field 2ℤ  and the order of the 

General linear group ( ),GL n q  of n n×  invertible matrices over a finite field F  containing q  elements 

is ( ) ( )( )( ) ( )
1

0 1 2 1

0

n
n k n n n n n

k

q q q q q q q q q q
−

−

=

− = − − − −∏ ⋯ , it is shown that the orders of the 

Symmetry groups of 3
H  and 4

H  are 168 and 20,160 respectively. 
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That is, ( ) 0 0 1 1 2 2

0 1 2 3

0 0 1 1 2 2

1 , , ,
H H H H H H

H H H H
H H H H H H

     
= = = =     − − −    

 and so on. The 

Hadamard matrices  
0 1 2 3
, , , ,H H H H ⋯   are known as ‘Standard Hadamard matrices’. From these examples, 

it is easy to see that Standard Hadamard matrix nH  is a square matrix of order 2 .
n

 There are many ways to 

construct these matrices among which Payley’s construction is one of the interesting methods. As we are 

concentrating on group actions, construction methods are not discussed here.  

 

2. MAIN RESULTS  

 

Definition 2.1: Each row ih  of a Hadamard matrix is called a ‘Hadamard pattern’ and the set of all Hadamard 

patterns of the Hadamard matrix H  is denoted by ( ).P H   

Example 1: The second row 1, -1, 1, -1 of the matrix 
2

H  is a Hadamard pattern.  

Definition 2.2: The Hadamard pattern set ( )P H  of the rows 1 2, , , nh h h⋯  of H  is known as a ‘Hadamard 

network’. 

Example 2:  The Hadamard network of the matrix 
2

H  is given by ( ) { }2 1 2 3 4
, , , ,P H h h h h=  where 

( ) ( ) ( ) ( )1 2 3 4
1,1,1,1 , 1, 1,1, 1 , 1,1, 1, 1 , 1, 1, 1,1 .h h h h= = − − = − − = − −  

Definition 2.3:  If α  is a permutation in the Permutation group ,kS  then it induces a mapping 

( ) ( ): P H P Hα →ɶ  of the corresponding states defined by ( ) ( ) ( ) ( )( )1 2 1 2
, , , , , , .

k k
s s s s s s

α α α
α =ɶ ⋯ ⋯  

Example 3:  If ( ) 4
3, 4 Sα = ∈  then it gives ( ) ( )1 2 3 4 1 2 4 3

, , , , , ,s s s s s s s sα =ɶ  which induces for 

( )2
1, 1,1, 1h = − −  in ( )2

,P H  ( ) ( )1, 1,1, 1 1, 1, 1,1 .α − − = − −ɶ  

Definition 2.4:  If H be a Hadamard matrix of order k  with Hadamard network { }1 2
( ) , , ,

n
P H h h h= ⋯ , then 

α belongs to the set ( )S H , known as the set of Symmetries   of the standard Hadamard matrix ,H  if 

( ) ( ), ,1 , ,
i j i

h h h P H i j kα = ∀ ∈ ≤ ≤ɶ where k
S is the Permutation group on k  symbols. 

Example 4:  If ( )2,3α =  be a permutation in 4S and the Hadamard network of the Standard Hadamard 

matrix 2H  be ( ) ( ) ( ) ( ) ( ){ }2 1 2 3 4
1,1,1,1 , 1, 1,1, 1 , 1,1, 1, 1 , 1, 1, 1,1 ,P H h h h h= = = − − = − − = − −  then 

( ) ( ) ( ) ( )1 1 2 3 3 2 4 4
, , , .h h h h h h h hα α α α= = = =ɶ ɶ ɶ  Therefore, ( )2

.S Hα ∈  But, the permutation ( )1,3  

does not belong to ( )2
S H  since ( ) ( ) ( )3 2

1,1,1, 1 .h P Hα = − − ∉ɶ  

Theorem 2.5:  The set of Symmetries ( )S H  of the Hadamard matrix H of order k forms a group with 

respect to the composition of the permutations defined in the Permutation group .
k

S  

Proof: If ( ) ( ) ( ) ( ), , , , .i j i t iS H h h h h h P Hα β α β∈ = = ∀ ∈ɶɶ Therefore

( )( ) ( )( ) ( ) ( ) ( ) ( )i i t r
h h h h P H S Hα β α β α α β α β= = = ⇒ ∈ ⇒ ∈ɶ ɶ ɶɶ ɶ ɶ ɶ� � � . Since the composition 

of permutations is associative, obviously ( )S H  satisfies the Associative Law, and since Identity permutation 

I in kS induces Identity map on ( ) ,P H  it is clear that ( )I S H∈  and 

( ) ( ) ( ), .I I S Hα α α α= = ∀ ∈� �  It is easy to see that ( ) ( ): P H P Hα →ɶ  is one-one and onto. 

Therefore, ( )
1

α
−
ɶ  is defined on ( ) ,P H  and hence ( )1 S Hα − ∈  such that 

1
.Iα α − =�  Hence, ( )S H  

forms a group.  

Remark: Since the composition of permutations is not commutative, the group ( )S H  is not abelian. 
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3. SYMMETRY GROUPS OF 0 1 2 3, , ,H H H H
 

 

If 
n

H  is a Standard Hadamard matrix, it has 2n
 elements, and each element of ( )P H  begins with 1. 

Therefore, each ( )S Hα ∈ɶ  has ( )1 1.α =
 

Hence, the Symmetry group ( )0
S H  of the first Standard 

Hadamard matrix 0H  is the trivial group. That is, ( ) { }0
,S H I=  where I is the identity element.  

For the second Standard Hadamard matrix
1

H , the pattern set is ( ) ( ) ( ){ }1 1 2
1,1 , 1, 1 .P H h h= = = −  Since 

1
H  is a square matrix of order 2, consider the Permutation group ( ){ }2

, 1, 2S I=  on 2 symbols. The identity 

permutation I induces ( )1 1
I h h=ɶ  and ( )2 2

I h h=ɶ  and hence ( )1
.I S H∈  If ( )1, 2 ,α =  then 

( ) ( )1, 2 2,1α =ɶ  and hence ( )1 1
h hα =ɶ  and ( ) ( ) ( )2 2

1,1 .h P Hα = − ∉ɶ  Therefore, the permutation 

( ) ( )1
1, 2 .S H∉  Hence, ( ) { }1

,S H I=  the trivial group. 

The Pattern set ( )2
P H  of the Standard Hadamard matrix 

2
H  is   

( ) ( ) ( ) ( ) ( ){ }2 1 2 3 4
1,1,1,1 , 1, 1,1, 1 , 1,1, 1, 1 , 1, 1, 1,1 .P H h h h h= = = − − = − − = − −

 
Since 2H  is a 

square matrix of order 4, consider the Permutation group 4S whose order is 24. Since the first entry of each 

pattern of 
2

H  begins with 1, out of 24 permutations of the group 
4
,S  the permutations in which the first 

element does not change shall belong to the Symmetry group ( )2
.S H  That is, the permutations α  in which 

( )1 1α =
 
belongs to ( )2

.S H  Therefore, ( ) ( ) ( ) ( ) ( ) ( ){ }2
, 2,3 , 2, 4 , 3, 4 , 2,3, 4 , 2, 4,3 ,S H I= contains 

six elements among which 3 are even permutations and 3 are odd. Therefore, it is easy to see that the Symmetry 

group ( )2
S H  is isomorphic to the Permutation group 3

.S  That is, ( )2 3
.S H S≅  

Before going to the fourth Standard Hadamard matrix 3,H  it is necessary to go through the following 

theorems.  

Theorem 2.6: For the Standard Hadamard matrices, ,
n

H  the Symmetry group ( )n
S H  is isomorphic to the 

General linear group of n n×  invertible matrices over the field 2
.ℤ  That is, ( ) ( )2

, .
n

S H GL n≅ ℤ  

Proof: See [1]. 

 

Theorem 2.7: The order of the General linear group ( ),GL n q  of n n×  invertible matrices over a finite field 

F containing q elements is ( ) ( )( )( ) ( )
1

0 1 2 1

0

.
n

n k n n n n n

k

q q q q q q q q q q
−

−

=

− = − − − −∏ ⋯  

Proof: See [2]. 

Therefore, by the Theorems 2.6 and 2.7, for the fourth Standard Hadamard matrix 3 ,H we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 2

3 2 3 2 33, 3, 2 1 2 2 2 2 168,S H GL S H GL S H≅ ⇒ = ⇒ = − − − =ℤ ℤ  

since 
2

2.=ℤ  Similarly, for the fifth Standard Hadamard matrix ( )4
S H , it is obvious to see that 

 

 

 

( ) ( ) ( ) ( )

( ) ( )( )( )( ) ( )( )( )( )

4 2 4 2

4 4 1 4 2 4 3

4

4, 4,

2 1 2 2 2 2 2 2 15 14 12 8 20,160.

S H GL S H GL

S H

≅ ⇒ =

⇒ = − − − − = =

ℤ ℤ

 

Remark: It is clear that the group ( )3
S H  is a subgroup of the Permutation group 

8
S  on 8 symbols, and 

( )4
S H  is a subgroup of the Permutation group 

16
S  on 16 symbols. 
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