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Abstract In this paper we consider the Diophantine equation 783x + 85y = z2, where
x, y, z are non-negative integers and determine the non-negative integer solutions of this
equation. Our result shows that (x, y, z) = (1, 0, 28) is a unique non-negative integer
solution of this equation.
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1 Introduction

Diophantine equations provide the answers of the critical problems of Astrology; Mathematics; Chem-
istry; Cryptography and Algebra. There are various methods available in the literature for solving
Diophantine equations (linear or non-linear) but there is no universal method that solves all the Dio-
phantine equations. There are numerous methods which are very well documented and are helpful
in solving linear Diophantine equations [1–5]. Aggarwal et al. [6] studied the Diophantine equation
223x + 241y = z2 and proved that this equation has no solution in the set of non negative integers.
Aggarwal et al. [7] examined completely the Diophantine equation 181x + 199y = z2.
Aggarwal and Sharma [8] proved that the non-linear Diophantine equation 379x+397y = z2 has no non-
negative integer solution. The Diophantine equation 193x + 211y = z2 was examined by Aggarwal [9].
Aggarwal and Kumar [10] studied the exponential Diophantine equation

(
132m

)
+ (6r + 1)n = z2and

proved that this equation is not solvable in the set of non-negative integers. Aggarwal and Upadhyaya
[11] considered the Diophantine equation 8α+67β = γ2 in their study and proved that this Diophantine
equation has a unique non-negative integer solution. Gupta et al. [12] studied the Diophantine equation
M5

p +M7
q = r2 with the help of arithmetic modular method.

Bhatnagar and Aggarwal [13] proved that the Diophantine equation 421p + 439q = r2 has no solution
in non-negative integers. Gupta et al. [14] examined the non-linear exponential Diophantine equation
(xa + 1)m +

(
yb + 1

)n
= z2 and proved that this equation has no non-negative integer solution. Gupta

et al. [15] studied the non-linear exponential Diophantine equation xα + (1 +my)β = z2. Hoque and
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Kalita [16] studied the Diophantine equation (pq − 1)x + pqy = z2. Kumar et al. [17] examined the
Diophantine equation 601p + 619q = r2 for non-negative integer solutions.
Kumar et al. [18] studied the Diophantine equation

(
22m+1 − 1

)
+ (6r+1 + 1)

n
= ω2 and determined

that this equation has no non-negative integer solution. Kumar et al. [19] proved that the Diophantine
equation

(
72m

)
+ (6r + 1)n = z2 is not solvable in the set of non-negative integers. The Diophantine

equation 211α+229β = γ2 was examined by Mishra et al. [20] and they proved that this equation is not
solvable in the set of non-negative integers. Sroysang [22–26] examined various Diophantine equations
such as323x + 325y = z2,3x + 45y = z2, 143x + 145y = z2, 3x + 85y = z2 and 4x + 10y = z2 for
non-negative integer solutions.
Aggarwal et al. [27] considered the Diophantine equation 143x + 45y = z2 in their study and proved
that this equation has a unique solution in the set of non-negative integers. Aggarwal et al. [28] studied
the Diophantine equations 143x +485y = z2 for its non-negative integer solutions. Recently, Aggarwal
et al. [29] proved that the Diophantine equation 143x + 85y = z2 has a unique solution in the set of
non-negative integers.
The main aim of this manuscript is to study the Diophantine equation 783x + 85y = z2, where x, y, z
are non-negative integers and to determine non-negative integer solutions of this equation.

2 Preliminaries

Proposition 2.1. Catalan’s Conjecture [21]: The Diophantine equation lx −my = 1, where l, m, x
and y are integers such that min {l, m, x, y} > 1, has a unique solution (l, m, x, y) = (3, 2, 2, 3).

Lemma 2.2. The Diophantine equation 783x + 1 = z2, where x, z are non-negative integers, has a
unique solution (x, z) = (1, 28).

Proof. Suppose that x, z are non-negative integers such that 783x + 1 = z2. If x = 0, then z2 = 2
which is impossible. Then x ≥ 1. Now z2 = 783x + 1 ≥ 7831 + 1 = 784. Thus z ≥ 28. Now, we
consider the equation z2 − 783x = 1. By Proposition 2.1, we have x = 1. It follows that z2 = 784.
Hence z = 28.

Lemma 2.3. The Diophantine equation 85y + 1 = z2, where y, z are non-negative integers, has no
non-negative integer solution.

Proof. Suppose that y, z are non-negative integers such that 85y + 1 = z2. If y = 0, then z2 = 2
which is impossible. Then y ≥ 1. Now z2 = 85y + 1 ≥ 851 + 1 = 86. Thus z ≥ 10. Now, we consider
the equation z2 − 85y = 1. By Proposition 2.1, we have y = 1. It follows that z2 = 86. This is a
contradiction. Hence, the Diophantine equation 85y +1 = z2, where y, z are non-negative integers, has
no non-negative integer solution.

3 Main results

Theorem 3.1. (x, y, z) = (1, 0, 28) is the unique non-negative integer solution of the Diophantine
equation 783x + 85y = z2, where x, y, z are non-negative integers.

Proof. Let x, y, z be non-negative integers such that 783x +85y = z2. By Lemma 2.3, we have x ≥ 1.
Note that z is even. Then z2 ≡ 0 (mod 4). Since 85y ≡ 1 (mod 4), it follows that 783x ≡ 3 (mod 4).
We obtain that x is odd. Now, we consider the following two cases:
Case 1. When y = 0, by Lemma 2.2 we obtain that x = 1 and z = 28.
Case 2. When y ≥ 1, then 85y ≡ 0 (mod 5). Note that 783x ≡ 3 (mod 5) or 783x ≡ 2 (mod 5). Then

z2 ≡ 2 (mod 5) or z2 ≡ 3 (mod 5). In fact, z2 ≡ 0 (mod 5), or, z2 ≡ 1 (mod 5) or z2 ≡ 4 (mod 5).
This is a contradiction.

Hence, (x, y, z) = (1, 0, 28) is the unique non-negative integer solution of the Diophantine equation
783x + 85y = z2, where x, y, z are non-negative integers.

Corollary 3.2. The Diophantine equation 783x + 85y = w4, where x, y, w are non-negative integers,
has no non-negative integer solution.
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Proof. Let x, y, w be non-negative integers such that 783x+85y = w4. Let z = w2. Then the equation
783x + 85y = w4 becomes 783x + 85y = z2. By Theorem 3.1, we have (x, y, z) = (1, 0, 28). Then
w2 = z = 28. This is a contradiction. Hence, the Diophantine equation 783x +85y = w4, where x, y, w
are non-negative integers, has no non-negative integer solution.

Corollary 3.3. (x, y, s) = (1, 0, 14) is the unique non-negative integer solution of the Diophantine
equation 783x + 85y = 4s2, where x, y, s are non-negative integers.

Proof. Let x, y, s be non-negative integers such that 783x+85y = 4s2. Let z = 2s. Then the equation
783x + 85y = 4s2 becomes 783x + 85y = z2. By Theorem 3.1, we have (x, y, z) = (1, 0, 28). Then
2s = z = 28. Thus s = 14. Hence, (x, y, s) = (1, 0, 14) is the unique non-negative integer solution of
the Diophantine equation 783x + 85y = 4s2, where x, y, s are non-negative integers.

Corollary 3.4. The Diophantine equation 783x + 85y = 9u2, where x, y, u are non-negative integers,
has no non-negative integer solution.

Proof. Let x, y, u be non-negative integers such that 783x + 85y = 9u2. Let z = 3u. Then the
equation 783x + 85y = 9u2 becomes 783x + 85y = z2. By Theorem 3.1, we have (x, y, z) = (1, 0, 28).
Then 3u = z = 28.
This is a contradiction. Hence the Diophantine equation 783x + 85y = 9u2, where x, y, u are non-
negative integers, has no non-negative integer solution.

Corollary 3.5. The Diophantine equation 783x + 85y = 4v4, where x, y, v are non-negative integers,
has no non-negative integer solution.

Proof. Let x, y, v be non-negative integers such that 783x+85y = 4v4. Let z = 2v2. Then the equation
783x + 85y = 4v4 becomes 783x + 85y = z2. By Theorem 3.1, we have (x, y, z) = (1, 0, 28). Then
2v2 = z = 28. Thus v2 = 14. This is a contradiction. Hence the Diophantine equation 783x+85y = 4v4,
where x, y, v are non-negative integers, has no non-negative integer solution.

Corollary 3.6. The Diophantine equation 783x + 85y = 9t4, where x, y, t are non-negative integers,
has no non-negative integer solution.

Proof. Let x, y, t be non-negative integers such that 783x+85y = 9t4. Let z = 3t2. Then the equation
783x + 85y = 9t4 becomes 783x + 85y = z2. By Theorem 3.1, we have (x, y, z) = (1, 0, 28). Then
3t2 = z = 28. This is a contradiction. Hence, the Diophantine equation 783x + 85y = 9t4, where x, y, t
are non-negative integers, has no non-negative integer solution.

4 Conclusion

In this manuscript the authors successfully examined the Diophantine equation 783x + 85y = z2,
where x, y, z are non-negative integers for its non-negative integer solutions and proved that (x, y, z) =
(1, 0, 28) is a unique non-negative integer solution of this Diophantine equation. The methodology
discussed in this manuscript can be applied to solve other Diophantine equations and their systems in
future.
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