

Bull. Pure Appl. Sci. Sect. E Math. Stat. $\bf 39E(2),\ 302-308\ (2020)$ e-ISSN:2320-3226, Print ISSN:0970-6577 DOI: 10.5958/2320-3226.2020.00031.4 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 115-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2020

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

Fuzzy stability of cubic (ρ_1, ρ_2) -functional inequality *

Shalini $Tomar^{1,\dagger}$ and Nawneet $Hooda^2$

- Department of Mathematics, Kanya Mahavidyalaya, Kharkhoda, Sonepat, Haryana-131402, India.
- Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana-131039, India.
 - 1. E-mail: s_saroha30@yahoo.com , 2. E-mail: nawneethooda@gmail.com

Abstract In this paper, we introduce and ratify the generalized Hyers-Ulam stability of cubic (ρ_1, ρ_2) -functional inequality in fuzzy normed space using the fixed point method.

Key words Generalized Hyers-Ulam stability(H-US), Fuzzy Normed space, Cubic (ρ_1, ρ_2) -functional inequality, Cubic (ρ_1, ρ_2) -functional equation.

2020 Mathematics Subject Classification 26E50, 39B52, 39B62, 46S40, 47H10, 47S40.

1 Introduction

Few years ago, Glányi [8] proclaimed that any f gratifies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1})$$

if f gratifies the functional inequality

$$||2f(x) + 2f(y) - f(xy^{-1})|| = ||f(xy)||$$
(1.1)

Glányi [9] and Fechner [5] ratified the H-US of the functional inequality (1.1). Park, Cho and Han [18] investigated and ratified the H-US of the Cauchy additive functional inequality

$$||f(x)+f(y)+f(z)|| = ||f(x+y+z)|| \tag{1.2}$$

and the Cauchy-Jensen additive functional inequality

$$||f(x)+f(y)+2f(z)|| = ||2f(\frac{x+y}{2}+z)||. \tag{1.3}$$

and they also ratified the H-US of (1.2) and (1.3) in Banach spaces. The Hyers-Ulam Stability is consequence of study of Ulam's [1] problem regarding stability of group homomorphism by various mathematicians namely Hyers' [10], Aoki [2], Th.M. Rassias [19], Găvruta [7] under various adaptations. Park [16, 17] introduced additive ρ -functional inequalities and ratified their H-US in Banach spaces and

^{*} Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief). Received April 19, 2018 / Revised September 17, 2019 / Accepted October 14, 2019. Online First Published on December 26, 2020 at https://www.bpasjournals.com/.

[†]Corresponding author Shalini Tomar, E-mail: s_saroha30@yahoo.com

non-Archimedean Banach spaces. In this paper, we introduce and ratify generalized H-US of cubic (ρ_1, ρ_2) -functional inequality

$$F(F_1(x, y, z), t) = \min(F(\rho_1 F_2(x, y, z), t), F(\rho_2 F_3(x, y, z), t))$$
(1.4)

where

$$F_{1}(x,y,z) = f(kx + (k+1)y + (k+2)z) - f(kx - (k+1)y - (k+2)z)$$

$$-2f((k+1)y + (k+2)z) - f(kx + (k+1)y) - f(kx + (k+2)z)$$

$$+f(kx - (k+1)y) + f(kx - (k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

$$F_{2}(x,y,z) = 8f((kx + (k+1)y + (k+2)z)/2) - f(kx - (k+1)y - (k+2)z)$$

$$-2f((k+1)y + (k+2)z) - f(kx + (k+1)y) - f(kx + (k+2)z)$$

$$+f(kx - (k+1)y) + f(kx - (k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

$$2(F_{3}(x,y,z)) = 8f((kx + (k+1)y + (k+2)z)/2) - f(kx - (k+1)y - (k+2)z)$$

$$-2f((k+1)y + (k+2)z) - f(kx + (k+1)y) - f(kx + (k+2)z)$$

$$+8f((kx - (k+1)y)/2) + f(kx - (k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

in fuzzy normed space, where k is a positive integer greater than one; $\rho_1, \rho_2 \in \mathbb{R} \setminus \{0\}$ with $\{\frac{1}{2g_1} + \frac{1}{g_2}\} < 1$.

2 Preliminaries

Katsaras [11] defined the concept of fuzzy norm on a linear space in 1984. Since then, various mathematicians [3,6,12,20] have defined fuzzy norms on a vector space from various points of view.

Definition 2.1. ([3,15]): If X is a real vector space, then a function $F: X \times \mathbb{R} \to [0,1]$ is a fuzzy norm on X if for every $a,b \in X$ and all $r,m,n \in \mathbb{R}$, we have:

FN1. F(a, n) = 0 for n = 0,

FN2. a = 0 iff F(a, n) = 1 for all n > 0,

FN3. $F(ra, n) = F(a, \frac{n}{|r|})$ if $r \neq 0$,

FN4. $F(a+b, m+n) = \min\{F(a, m), F(b, n)\},\$

FN5. $\lim_{n\to\infty} F(a,n) = 1$, where F(a,.) is a non-decreasing function on \mathbb{R} ,

FN6. F(a,.) is continuous on \mathbb{R} , for $a \neq 0$,

then the pair (X, F) is called a fuzzy normed vector space.

Definition 2.2. ([3,15]):

- 1. Let (X, F) be a fuzzy normed vector space. A sequence $\{a_n\}$ in X is said to be *convergent* if \exists an $a \in X$ such that $\lim_{n\to\infty} F(a_n-a,r)=1$ for all r>0, where $F-\lim_{n\to\infty} a_n=a$ (a is the limit of the sequence $\{a_n\}$).
- 2. Let (X, F) be a fuzzy normed vector space. A sequence $\{a_n\}$ in X is said to be a Cauchy sequence if for each $\varepsilon > 0$ and each r > 0 there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ and all m > 0, we have $F(a_{n+m}-a_n, r) > 1-\varepsilon$.
- 3. The fuzzy norm is said to be *complete* if every Cauchy sequence is convergent and the fuzzy normed vector space is called a *fuzzy Banach space*.
- 4. A mapping $f:X \to Y$ where X and Y are fuzzy normed vector spaces is continuous at a point $a_0 \in X$ if for each sequence $\{a_n\}$ converging to $a_0 \in X$, the sequence $\{f(a_n)\}$ converges to $f(a_0)$. If $f:X \to Y$ is continuous at each $a \in X$, then $f:X \to Y$ is said to be *continuous* on X.

Definition 2.3. ([13]): Let X be a set. A function $d: X \times X \to [0, \infty)$ is called a generalized metric on X if d gratifies the following conditions:

- 1. d(x,y) = 0 if and only if x=y for all $x, y \in X$,
- 2. d(x,y) = d(y,x) for all $x, y \in X$,
- 3. $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Theorem 2.4. ([4]): Let (X,d) be a complete generalized metric space and $G:X \to X$ a strictly contractive mapping with Lipschitz constant L<1. Then, for all $x \in X$, either $d(G^nx, G^{n+1}x) = \infty$, for all $n \in \{0, \mathbb{Z}^+\}$ or there exists a positive integer n_0 such that

- 1. $d(G^n x, G^{n+1} x) < \infty$ for all $n \ge n_0$,
- 2. the sequence $\{G^n x\}$ converges to a fixed point y^* of G,
- 3. y^* is the unique fixed point of G in the set $Y = \{y \in X : d(G^{n_0}x, y) < \infty\}$,
- 4. $d(y, y^*) \le (1/(1-L))d(y, Gy)$ for all $y \in Y$.

Throughout the paper, suppose that ρ_1 and ρ_2 are fixed nonzero real numbers with $\{\frac{1}{2\rho_1} + \frac{1}{\rho_2}\} < 1$ and k is a positive integer greater than one. Also X and Y be real fuzzy normed space and fuzzy Banach space respectively with norm F(.,t).

3 Cubic ρ_1, ρ_2 - functional inequality

Lemma 3.1. Let $f:X \to Y$ be a mapping with f(0) = 0 and gratifies (1.4) for all $x, y, z \in X$ and all t>0. Then f is cubic.

Proof. Suppose that function f gratifies (1.4). By letting y = z = 0 in (1.4), we get

$$1 \le \min(F(\rho_1(8f(\frac{kx}{2}) - f(kx)), t), (\rho_2(8f(\frac{kx}{2}) - f(kx)), t))$$

$$\leq F((\rho_1+\rho_2)(8f(\frac{kx}{2})-f(kx)),2t) = F((8f(\frac{x}{2})-f(x)),\frac{2t}{(\rho_1+\rho_2)k})$$

Therefore,

$$f(\frac{x}{2}) = \frac{1}{8}f(x) \tag{3.1}$$

Now from (1.4) and (3.1) we get

$$F(F_1(x, y, z), t) \le \min(F(\rho_1 F_1(x, y, z), t), F(\frac{\rho_2}{2} F_1(x, y, z), t))$$

$$= \min(F(\frac{1}{2}F_1(x, y, z), \frac{t}{2|\rho_1|}), F(\frac{1}{2}F_1(x, y, z), \frac{t}{|\rho_2|}))$$

$$\leq F(F_1(x, y, z), (\frac{1}{2|\rho_1|} + \frac{1}{|\rho_2|})t)$$

i.e.,

$$F(F_1(x,y,z),t) \ge F(F_1(x,y,z),\frac{t}{\zeta})$$

where, $\zeta = \{\frac{1}{2\rho_1} + \frac{1}{\rho_2}\}$. Putting $\frac{t}{|\zeta|^{n-1}}$ instead of t, we get

$$F(F_1, \frac{t}{|\zeta|^{n-1}}) \ge F(F_1, \frac{t}{|\zeta|^n})$$

Thus, for all $n \in \mathbb{Z}^+$ we have, $F(F_1, t) \geq F(F_1, \frac{t}{|\zeta|^n})$.

Since $\zeta < 1$, therefore by taking limit $n \to \infty$ and using (**FN5**) from the Definition 2.1, we get $F(F_1(x,y,z),t) = 1$ for all $x,y,z \in X$, and hence $F_1(x,y,z) = 0$. So, $f:X \to Y$ is cubic.

Theorem 3.2. Let $\Psi:X^3 \to [0,\infty)$ be a function such that

$$\Psi(x,y,z) \le \frac{L}{8} \Psi(2x,2y,2z)$$

for some L<1 and for all $x,y,z \in X$. Let $f:X \to Y$ be a mapping with f(0) = 0 and satisfying

$$\min(F(F_1(x,y,z),t), \frac{t}{t+\Psi(x,y,z)}) \le \min(F(\rho_1 F_2(x,y,z),t), F(\rho_2 F_3(x,y,z),t))$$
(3.2)

where,

$$F_{1}(x,y,z) = f(kx+(k+1)y+(k+2)z) - f(kx-(k+1)y-(k+2)z)$$

$$-2f((k+1)y+(k+2)z) - f(kx+(k+1)y) - f(kx+(k+2)z)$$

$$+f(kx-(k+1)y) + f(kx-(k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

$$F_{2}(x,y,z) = 8f((kx+(k+1)y+(k+2)z)/2) - f(kx-(k+1)y-(k+2)z)$$

$$-2f((k+1)y+(k+2)z) - f(kx+(k+1)y) - f(kx+(k+2)z)$$

$$+f(kx-(k+1)y) + f(kx-(k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

$$2(F_{3}(x,y,z)) = 8f((kx+(k+1)y+(k+2)z)/2) - f(kx-(k+1)y-(k+2)z)$$

$$-2f((k+1)y+(k+2)z) - f(kx+(k+1)y) - f(kx+(k+2)z)$$

$$+8f((kx-(k+1)y)/2) + f(kx-(k+2)z) + 2f((k+1)y) + 2f((k+2)z)$$

for all $x, y, z \in X$ and all t>0. Then $C(x) = F - \lim_{n \to \infty} 8^n f(\frac{x}{2^n})$ exists for all $x \in X$ and defines a cubic mapping $C:X \to Y$ such that

$$F(f(x)-C(x),t) \ge \frac{(2-2L)kt}{(2-2L)kt+\eta\Psi(x,0,0)}$$
(3.3)

for all $x \in X$, t>0, where, $\eta = \frac{1}{|\rho_1|} + \frac{1}{|\rho_2|}$.

Proof. Let
$$y=z=0$$
 in (3.2), we get
$$\frac{t}{t+\Psi(x,0,0)} \leq \min(F(\rho_1(8f(\frac{kx}{2})-f(kx)),t),F(\rho_2(8f(\frac{kx}{2})-f(kx)),t))$$
$$\leq \min(F((8f(\frac{kx}{2})-f(kx)),\frac{t}{|\rho_1|}),F(\rho_2(8f(\frac{kx}{2})-f(kx)),\frac{t}{|\rho_2|})$$
$$\leq F(8f(\frac{kx}{2})-f(kx),(\frac{1}{|\rho_1|}+\frac{1}{|\rho_2|})\frac{t}{2})$$

i.e.

$$F(f(x) - 8f(\frac{x}{2}), \frac{\eta t}{2k}) \ge \frac{t}{t + \Psi(x, 0, 0)}$$
(3.4)

Now let us consider the set $S = \{g: X \to Y\}$ and a generalized metric on S, such that

$$d(g,h) = \inf(\varepsilon \in R^+: F(g(x) - h(x), \varepsilon t) = \frac{t}{t + \Psi(x,0,0)}, \text{ for all } x \in X, \text{ for all } t > 0),$$

where $\inf(\Psi) = +\infty$. Next, using the Lemma 2.1 ([14]) we can say that (S,d) is complete. Now, let us consider a linear mapping $A:S\to S$ such that

$$Ag(x) = 8g(\frac{x}{2})$$

for all $x \in X$. Let $g, h \in S$ with $d(g, h) = \gamma$. Then

$$F(g(x)-h(x),\gamma t) \ge \frac{t}{t+\Psi(x,0,0)}$$

for all $x \in X, t>0$. Therefore,

$$F(Ag(x) - Ah(x), L\gamma t) = F(8g(x/2) - 8h(x/2), L\gamma t) = F(g(x/2) - h(x/2), (L\gamma t/8) + (L$$

$$\geq \frac{\frac{Lt}{8}}{\frac{Lt}{8} + \Psi(x/2,0,0)} \geq \frac{\frac{Lt}{8}}{\frac{Lt}{8} + \frac{L}{8}\Psi(x,0,0)} = \frac{t}{t + \Psi(x,0,0)}$$

for all $x \in X, t > 0$. Hence $d(Ag, Ah) = L\gamma$, i.e. d(Ag, Ah) = Ld(g, h) for all $g, h \in S$. Also using (3.4), we can say that

$$d(f, Af) \le \frac{\eta}{2k}$$
.

Now, by Theorem 2.4, there exists a mapping $C: X \to Y$ such that:

1. C is a fixed point of A, i.e.,

$$C(x) = 8C(\frac{x}{2}) \tag{3.5}$$

for all $x \in X$. Since the mapping C is a unique fixed point of A in the set

$$T = (g \in S: d(f, g) < \infty),$$

thus C is a unique mapping satisfying (3.5) such that there exists an $\varepsilon \in (0,\infty)$ satisfying

$$F(f(x)-C(x),\varepsilon t) \ge \frac{t}{t+\Psi(x,0,0)}$$

for all $x \in X$.

- 2. $d(A^n f, C) \to 0$ as $n \to \infty$. This implies that $C(x) = F \lim_{n \to \infty} 8^n f(\frac{x}{2^n}) \ \forall \ x \in X$.
- 3. $d(f,C) \leq \frac{1}{1-L}d(f,Af)$, which implies that $d(f,C) \leq \frac{\eta}{2k-2kL}$. And thus inequality (3.3) is ratified.

$$\min(F(8^nF_1(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n}),8^nt),\frac{t}{t+\Psi(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n})})$$

$$\leq \min(F(8^n\rho_1F_2(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n}),8^nt),F(8^n\rho_2F_3(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n}),8^nt))$$

for all $x, y \in X$, all t>0 and all $n \in N$. So,

$$\min(F(8^{n}F_{1}(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}), t), \frac{t/8^{n}}{(t/8^{n}) + (L^{n}/8^{n})\Psi(x, y, z)})$$

$$\leq \min(F(8^{n}\rho_{1}F_{2}(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}), t), F(8^{n}\rho_{2}F_{3}(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}), t))$$
(3.6)

Since $\lim_{n\to\infty}\frac{t/8^n}{(t/8^n)+(L^n/8^n)\Psi(x,y,z)}=1$ for all $x,y\in X$ for all t>0, therefore by Lemma 3.1 the mapping $C:X\to Y$ is cubic.

Corollary 3.3. Let $\varsigma \geq 0$ and p be a real number with p>3.Let X be a normed vector space with norm ||.|| and (Y,N) be a fuzzy normed vector space. Let $f:X \to Y$ be a mapping with f(0)=0 and

$$\min \left(F\left(F_{1}\left(x,y,z\right),t\right), \frac{t}{t+\varsigma(||x||^{p}+||y||^{p})} \right) = \min(F(\rho_{1}F_{2}(x,y,z),t),F(\rho_{2}F_{3}(x,y,z),t))$$
(3.7)

where $F_1(x,y,z,),F_2(x,y,z,),F_3(x,y,z,)$ are as defined earlier for all $x,y,z\in X$ and all t>0. Then $C(x)=F-\lim_{n\to\infty}8^nf(\frac{x}{2^n})$ exists for all $x\in X$ and a cubic mapping $C:X\to Y$ such that

$$F(f(x)-C(x),t) \ge \frac{2(k^p - k^3)kt}{2(k^p - k^3)kt + \eta_{\varsigma}||kx||^p}$$
(3.8)

for all $x \in X$, t>0, where $\eta = \frac{1}{|\rho_1|} + \frac{1}{|\rho_2|}$.

Proof. The proof follows from the Theorem 3.2 by taking $\Psi(x,y,z) = \varsigma(||x||^p + ||y||^p + ||z||^p)$ for all $x,y,z \in X$ and $L = |k|^{3-p}$ and we get desired result.

Theorem 3.4. Let $\Psi: X^3 \to [0,\infty)$ be a function such that

$$\Psi(x, y, z) \le 8L\Psi(\frac{x}{2}, \frac{y}{2}, \frac{z}{2})$$

for some L<1 and for all $x, y, z \in X$. Let $f: X \to Y$ be a mapping with f(0) = 0 and satisfying (3.2). Then $C(x) = F - \lim_{n \to \infty} \frac{1}{8^n} f(2^n x)$ exists for all $x \in X$ and defines a cubic mapping $C: X \to Y$ such that

$$F(f(x) - C(x), t) \ge \frac{(2 - 2L)8kt}{(2 - 2L)8kt + \eta \Psi(x, 0, 0)}$$
(3.9)

for all $x \in X$, t > 0, where $\eta = \frac{1}{|\rho_1|} + \frac{1}{|\rho_2|}$.

Proof. It follows from (3.4) that, $F(\frac{1}{8}f(x) - f(\frac{x}{2}), \frac{\eta t}{16k}) \ge \frac{t}{t + \Psi(x,0,0)}$ for all $x \in X$ and all t > 0. Now consider the linear mapping $A: S \to S$ such that

$$Ag(x) = \frac{1}{8}f(2x)$$

for all $x \in X$, where (S,d) is the generalized metric space as defined in the Theorem 3.2. Then $d(f,Af) \leq \frac{\eta}{16k}$. Hence

$$d(f,C) \le \frac{\eta}{16k - 16kL}$$

which ratifies the inequality (3.9) and the rest of the proof can be easily generated from the previous Theorem 3.2.

Corollary 3.5. Let $\varsigma \geq 0$ and p be a real number with 0 . Let <math>X be a normed vector space with norm ||.|| and (Y,N) be a fuzzy normed vector space. Let $f: X \to Y$ be a mapping with f(0) = 0 and satisfying (3.7). Then $C(x) = F - \lim_{n \to \infty} \frac{1}{8^n} f(2^n x)$ exists for all $x \in X$ and a cubic mapping $C: X \to Y$ such that

$$F(f(x) - C(x), t) \ge \frac{(2k^3 - 2k^p)8kt}{(2k^3 - 2k^p)8kt + \eta\varsigma k^3||x||^p}$$
(3.10)

for all $x \in X$, t > 0, where, $\eta = \frac{1}{|\rho_1|} + \frac{1}{|\rho_2|}$.

Proof. The proof follows from the Theorem 3.4 by taking $\Psi(x, y, z) = \varsigma(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in X$ and $L = |k|^{p-3}$ and thus we get the desired result.

References

- Ulam, S.M. (1964). Problems in Modern Mathematics, Science Editions, John Wiley and Sons, New York, USA.
- [2] Aoki, T. (1950). On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2, 64–66.
- [3] Bag, T. and Samanta, S.K. (2003). Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11, 687–705.
- [4] Diaz, J.B. and Margolis, B. (1968). A fixed point theorem of the alternative for contraction on a generalized complete metric space, *Bull. Amer. Math. Soc.*, 74, 305–309.
- [5] Fechner, W. (2006). Stability of functional inequalities associated with the Jordan-von Neumann functional equation, *Aequationes Math.*, 71, 149–161.
- [6] Felbin, C. (1992). Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48, 239–248.
- [7] Găvruta, P. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(3), 431–436.
- [8] Glányi, A. (2001). Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math., 62, 303–309.
- [9] Glányi, A. (2002). On a problem by K. Nikodem, Math. Inequal. Appl., 5, 707-710.
- [10] Hyers, D.H. (1941). On the stability of the linear functional equation, *Proc. Natl. Acad. Sci. USA*, 27(4), 222–224.
- [11] Katsaras, A.K.(1984). Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12, 143-154.
- [12] Kim, H., Lee, J. and Son, E. (2012). Approximate functional inequalities by additive mappings, J. Math. Inequal., 6, 461–471.
- [13] Luxemburg, W.A.J. (1958). On the convergence of successive approximation in the theory of ordinary differential equation, Proc. K. Ned. Aked. Wet., Ser. A., Indag. Math., 20, 540–546.
- [14] Mihet, D. and Radu, V. (2008). On the stability of the additive Cauchy functional equation in random normed spaces, *J. Math. Anal. Appl.*, 343, 567–572.
- [15] Mirmostafaee, A.K., Mirzavaziri, M. and Moslehian, M.S. (2008). Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159, 730–738.

- [16] Park, C. (2015). Additive ρ -functional inequalities and equations, J. Math. Inequal., 9, 17–26.
- [17] Park, C. (2015). Additive ρ -functional inequalities in non-Archimedean normed spaces, *J. Math. Inequal.*, 9, 397–407.
- [18] Park, C., Cho, Y. and Han, M. (2007). Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, *J. Inequal. Appl.*, Art. ID 41820 (2007).
- [19] Rassias, Th.M. (1978). On the stability of the linear mapping in Banach spaces, $Proc.\ Amer.\ Math.\ Soc.,\ 72(2),\ 297–300.$
- [20] Xiao, J.Z. and Zhu, X.H. (2003). Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133, 389–399.

