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Abstract  Matrices play an important role in various branches of mathematics such
as coding theory, combinatorics and cryptography. Rhotrices are represented by coupled
matrices. The use of rhotrices in cryptography doubles the security of messages which
travel over insecure channels. We consider rhotrices of 3-dimension and derive some prop-
erties related to their characteristic roots. Further, we take a special class of rhotrices of
n-dimension and discuss its properties.
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1 Introduction

The concept of rhotrix was introduced by Ajibade [2] in 2003. A rhotrix is defined as a mathematical
array, which is in some way, between (2x2)-dimension

and (3x3)-dimension

a b ¢
d e f
g h i
matrices. The rhotrix of dimension three is defined by
a
R3 = <b c d>:a,b,c,d,e€3? (1.1)
e
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Here, h(R3)= c is the heart of rhotrix and all the entries of rhotrix are real numbers. Ajibade [2] also
discussed the following operations of addition and scalar multiplication.
a n

b c d 0 P q
Let Rs = < e f h(Rs) h i > and Q5 = < r s h(Qs) u v > be 5-dimensional rhotrices,
J k l w x y
m z
then the addition of these rhotrices is defined as

k w
m
a+n
b+o c+p d+gq
:<e—|—r f+s h(Rs)+h(Qs) h+u i+v>. (1.2)
Jj+w k+x l+y
m+z

The scalar multiplication « Rs for the real scalar « is defined as

a oa
b c d ab ac ad
aRs =a < e f h(Rs) h 1 > = <ae af oah(Rs) ah i > (1.3)
ki k l aj ak al
m am

The row-column multiplication of rhotrices is discussed in [6] as follows:

a f
ForR3—<b c d>andQ3—<g h j>,
e k

a f af +dg
R30Q3—<b c d><g h j>—<bf+eg ch aj+dk>.
e k bj + ek

A method of converting a rhotrix to a coupled matrix is discussed in [8]. Various problems involving
the m x m and the (m — 1) X (m — 1) matrices can be easily solved by coupled matrix simultaneously,
see [4,15]. The heart-oriented multiplication is discussed in [1,5].

The row-column multiplication of n-dimensional rhotrices is discussed by Sani [7]. The rhotrix of
n-dimension is given by

aii
a1 C11 ai2
a31 C21 az2 C12 a3

Rn = < an1 .. . . .. .. A1n > = (aij, Clk);

Ann—-2 Cpn—1n—2 An—1n—1 Cn—2n—-1 0Gn-2n
ann—1 Cn—1n—1 An—1n

Ann

The total number of elements in R, (n is always an odd number > 3) is given by |Ry| = "22“

R, = (aij, cix)is the coupled matrix with 4, j =1, 2, .. t; [, k=1,2, ...t — 1 for t = ”T'H

, where

*
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Further, for two coupled rhotrices Rn={(ai,j;, Ci %) and Qn={(bisjo, di,k,), the multiplication is defined
as

t t—1
R,oQn = <ai1j1: Cllk1> o <bi2j27 dl2k2> = < Z (ailjl bizjz) ) Z (Cllkl d12k2)>' (1'4)

inj1=1 loky=1

The inverse of the rhotrix

is defined as

_a
ac—bd

1 b ac;bd d
R3 = ~ bd—ac e " bd—ac : (15)

Matrices are important in cryptography. Some cryptosystems are based on matrices, such as Hill
cipher, see [3]. The rhotrices are represented as coupled matrices. Therefore, the use of rhotrix in
cryptography means the use of the double matrices which increase the security of the cipher. The
properties of rhotrices are discussed in [9-14, 16].

We discuss some properties of rhotrices R, = (asj, cix) over a finite field Fy which satisfies the following

condition:
o] if 14+ j = even,
P 'a”_{ 0 ifitj=odd. (1.6)

2 The main results

Theorem 2.1. Let R be a rhotriz of 3-dimension which satisfies the condition P of (1.6) and
A1, A2, Az be the characteristic roots of R. Then X2, A3, A2 are the characteristic roots of R* over

the finite field Fa.
ai
R_< 0 c1 O > (2.1)
az22

be the rhotrix satisfying the condition P of (1.6). Now, the characteristic roots of R are given by

Proof. Let

|[R— M| =0,
That is,
ail — A
0 ci1—A 0 |=0.
a22 — A
This gives
PRE (a11 + a2z + c11) 24 (a11c11 + ag2c11 + azeair) A + (a, az2c11) = 0. (2.2)
Since, A1, A2, A3 are the characteristic roots of R, therefore, there exists a non-zero vector X such that
RX = )X,
where, X = (x,,x2,x3) is a non-zero vector corresponding to the characteristic roots A1, A2, As.
Thus, we get
aii xT1 A1 €T
0 C11 0 T2 = )\2 X2 (23)
a22 x3 A3 Z3

ail ai T1 ai A1 1
< 0 C11 0 > < 0 C11 0 > T2 = < 0 C11 0 > )\2 ) N
a2z a22 T3 a22 A3 T3

nnnnnnnnnnn

Bulletin of Pure and Applied Sciences Section E - Mathematics € Statistics, Vol. 39 E, No. 2, July-December, 2020



280 P.L. Sharma, Arun Kumar and Arun Kumar Sharma

that is,
a11a11 z1 a11 z1 A1
< 0 cuienn 0 > T2 = < 0 c11 0 > T2 A2 (24)
22022 xs3 xs A3

Using (2.3) in (2.4), we get

aiiail 1 A1 A1 Z1
0 ciicir O 2 | = | A2 A2 2 )
22022 3 A3 A3 T3
2
/\1 X1
= )\2 o )
)\3 xrs3
)\% 1
= 3 2 | . (2.5)
)\% I3

Since, © = (z1, 2, x3) is a non-zero vector, therefore, it is clear from the above equation that A3, A3, A3
are the characteristic roots of the rhotrix R2. O

Theorem 2.2. Let R be a rhotriz of 3-dimension satisfying the condition P of (1.6). Then there exists
an invertible rhotriz S, such that S™'RS and R have the same characteristic roots (eigenvalues).

aii
R = < 0 C11 0 >
a2

Let A1, A2, As be its characteristic roots. Therefore,

Proof. Let the rhotrix be

PR (a11 + a22 + c11) A4+ (a11c11 + agac11 + ag2a11) A + (@, az2c11) = 0.

b11
S=( 0 din O
b2z
be non-singular.

Therefore, the inverse of S rhotrix is given by

Let the rhotrix

1 b

s :<o a o>. (2.6)

baa
Now,
ﬁ a1l b11
5—1R52<0 % 0><o en 0><0 diy o>,

oy a2 b2

1

@ a11b11
= < 0 @ 0 > < 0 c11din O >,
E a22b22
aii
= < 0 C11 0 > (27)
a22

Therefore, the characteristic equation of S™'RS is given by

|ST'RS — A =0,

nnnnnnnnnnn
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i.e.,
ail — )\
0 C11 — )\ O = 07
a2 — A
which gives
A’ + (a11 + a2z + c11) A2 + (a11c11 + azacit + azna1n) A + (@, azz¢11) = 0. (2.8)
It is clear from (2.2) and (2.8) that the characteristic roots of R and S™' RS are the same. O

Theorem 2.3. Let R be a rhotriz of 3-dimension satisfying the condition P of (1.6). Also A =
{AL; A2, Az} be the set of characteristic roots of the rhotrix R over the finite field Fo. Then ‘/\—le (for
some i =1,2,3) is the characteristic root of the rhotriz R.

Proof. Let A = {\, A2, A3} be the set of characteristic roots of rhotrix

aii
R = 0 C11 0 .
a2

The determinant of the rhotrix R is given by

a1
‘R‘ = 0 C11 0
az2
= (a11a22011) (29)
Therefore,
@ — 7(“11‘;2?011). (2.10)

Since ci11 is one of the characteristic roots of R among {)\1, A2, )\3}, thus taking A\; = c11 and putting
in (2.10), we get

IR _ (a;ya22c11)
i c11
= a11022. (2.11)

Putting the value of ‘)‘—Rll from (2.11) in the characteristic equation of R given in (2.2), we get

(1111(122)3 + (a11 + az22 + 1) ((111(122)2 + (a11c11 + a22¢11 + azzain) (a11a22) + (a; a22c11) = 0. (2.12)

Therefore, it is clear from (2.12) that &i‘ satisfies the equation (2.2). This implies that % is the
characteristic root of R. O

Theorem 2.4. Let R, be a rhotriz over finite field Fa, satisfying the condition P of (1.6). Then,
H(R?) = 1.

Proof. Let the rhotrix R, be given by

aii
asi C11
asi C21 a22
An—1)1 - Za(n—l) (n—1)
2 2
Rn—< O WD DLICES S D DLICES Vg eest)
Gno . . . S At (4D
2 2
An(n—2) Cn(n—1) A(n—1)(n—1)
An(n—1) C(n—1)(n—1)
Gnn

*
*WEECAS
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ai2
C12 ais
A1 (n—1)
Z A(n-1) (nt1) T ot Ci(n—1) Qln
2 2
a2n

Cn—1)n A(n—2)n
A(n—1)n

Since the rhotrix R, satisfies the condition P of (1.6), therefore R, becomes

1
0 1 0
1 0 1 0 1
Za(n71> (n—1) o 0
2 2
R, = an1 0 .- 0 ZC(W,gl) (n;l) 0 oo 0 ain , (2.13)
S Gt ey e o0
2 2
Gn(n-2) 0 A(n—-1)(n—1) 0  am-2)n
0 Cln—-1)(n-1) 0
ann
where a11, c11, @21, a12, 21, €21, . . ., C(n—1)(n—1), a, € F2 and ¢ (n—1) (n—1) is the heart of the rhotrix R,,
2 2
that is, H(R,).
Since, R2 = R, Rn, therefore,
n
2o aiai
1,j=1
n
0 > cijcii
ij=1
n n
> aijaji 0 > aijagi
i=3,,=1 ij=2
n n
0 Z CijCji 0 Z CijCji
i=3;=1 =2
n
0 3 a@w-n ;@5 (n=1)
P =1
R2 —_ n ! ]n
" > 2 aijagi 0 0 > cw-n,c -1
i=nj=1 i,j=1 2 J
n
0 > e ;@ (nt1)
ij=1 2 J
0
n n
> aijag-2; 0 > AGi-1);0G-1)i
i=n ;=3 i.j=3
n
0 > C(i-1)iC(i-1)i
©,j=2
n
> aiiai
i=1
‘4
*MEECAS,
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0
n
0 > @ijagi
i=1,;=3
n
0 >, CijCji 0
i=1,;=3

0 T > (2.14)
1

j=ni=
0
0
n
0 > Ai-2);@ji
j=n1i=3
0
Obviously, the heart of the rhotrix RZ is
n
2 —
H(R;,) = Z C(n;l) i€ (n=1) 5 (2.15)
i,j=1
(n—1) .
where ““5= is always even.
Therefore,
n
Z Cn—1) .C. (n—1) = C1iCj1 + C2iCj2 +C3iCj3+ . . . + Cm-1) .C. (n—1),
= 2 )2 2 I 2
©,j=1
= ci1€11 +C13€31 + C15C51 + C21C12 + . . . +Co-n € (n=1)- (2.16)
2 2

By using the condition P of (1.6) in (2.16) the terms like c12¢21 become zero. Similarly, all the terms
with i+ 7 = an odd number are zero and only the terms for which ¢+ j = an even number survive. Since
these terms are always odd in number, therefore, it is clear form (2.16) that sum of all these terms is
equal to 1 over the finite field Fo. Hence, we conclude that heart of rhotrix RZ is always equal to 1. [

Theorem 2.5. Let R, be a rhotriz satisfying the condition P of (1.6). Then, there exist a sub-rhotriz
< 0
< 0

of R% over the finite field Fs.

0 > , for n =4k, £ 1, where k; is an even number,
(2.17)

—_ = O = O

0 > , for n = 4ks £ 1, where k2 is an odd number,

Proof. Let the rhotrix R,, be

nnnnnnnnnnn
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Since, R2 = R, R, therefore,

*

0“%‘

SRR,

n
>0 D Gijag

i=nj=1

o

o O

Ju—
o

n-1)(n-1) 0 Qn—2)n
C(nfl)(nfl)

Ann

o

;5 Q44
Z I

i=3,j=1

CijCji
Z YA}

i=3,j=1

> D Gijag-2)i

i=n j=3

=]

Ain 3

n
> aijag
1,5=1

n
> CijCji

i,7=1

n

2 Giagi
i.7=2

n

> cijcji

ij=2

n

D AG-1)58G 1)
1,j=2

2 Ci—1)iC(G—1)i

1,j=2

n
> aiiai
=1
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n
> @ijaji
i=1,;=3
n
0 > aijag 0
i=1,;=3
0 0
n n
2.18
S o @y e e 0 Y S e (218)
i,j=1 2 2 j=ni=1
0 0
e e 0
n
0 Z Z A(3—2)5Qji
j=ni=3
0
For n =5, the entries of R2 are as follows:
3
-1 ,@; (n-1) = (21012 + ag2a22 + az3as2
n=5 ij=1 2
=0+1+0
= 1,

2
C(n—1) .C, (n—1) = C21C12 + C22C22
7 Y J T3

n=>5 ij=1

=140

C(n-3) .C. (n—3) = C11C11 + C12C21
(n=3) ;€5 (n3)

=0+1
2
Z C(n-1) .C. (n—3) = C11C12 *+ C12C22
) 7 Y J T3
n=>5 1j=1
=0+0
=0
and Y _ . Z?J:l Cn=3) ;C; (n-1) = C21C11 + c22¢21
2 2
=040
=0.
1
Clearly, { 0 1 0 ) isa sub-rhotrix of R2 over the finite field F.
1

Similarly, for n = 7, the entries of R2 are as follows:

3
E E Cn=3) ,C; (n=3) = C21C12 + CagC22 + C23C32
2 2

n="7 ij=1

*
*WEECAS
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=04+1+0
= 1,
4
Z Z Ay ;@ (n-1) = (31013 + as2a23 + aszass + azaa43
n=7 i,;j=1 2 2
=14+0+1+40
= 07
4
Z Z G(n=3) ,0; (n=3) = 021012 + ag2a22 + a23a32 + a24a42
n=7 i,j=1 2 2
=0+14+0+1
= O’
4

E E A(n-1) ;@; (n=3) = 031012 + az2a22 + aszasz + azaa42
2 2
n=7 i,j=1

=0+0+0+0
= ()7
and Y _ . ij:l Gn_s) ;0; (n_1) = G21013 + a22a23 + a23a33 + a240a43
=0+0+0+0
= 07
0
Clearly, < 0 1 0 > is a sub-rhotrix of R2 over the finite field F.
0
Therefore, in the same way for other values of n, we conclude the desired result of (2.17) for R2
rhotrix. O

3 Illustrations
Here, we illustrate some results given in section 2 with the help of examples.

Example 3.1. Let Rs be a rhotrix satisfying the condition P of (1.6) and let it given by

1
01 0
R5—<10101>.
01 0
1
Now, R? = RsRs
1 1
010 01 0
_<1o1o1><10101>,
010 01 0
1 1

Il
/\
[\o}

o O O
N = =N
o O O
[\o}
~—

nnnnnnnnnnn
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Since, all the entries of above rhotrix belong to the finite field 2, therefore, we get

0
R§:<0 0 0>‘ (3.1)
0

Clearly, the heart of matrix RZ over the finite field Fo is 1. Further, from (3.1) it is concluded that,

O = == O
o O O

1
there is a sub-rhotrix of R? of the form < 0 1 0 >
1

Example 3.2. Let R be a rhotrix of 7-dimensions satisfying the condition P of (1.6) and suppose it
is given by

1
0 1 0
1 0 1 0 1
R7—<0101010>.
1 01 0 1
0 1 0
1
Now,
1 1
0 1 0 0 1 0
1 0 1 0 1 1 0 1 0 1
R$—<0101010><0101010>,
1 01 0 1 1 0 1 0 1
0 1 0 0 1 0
1 1
2
0 2 0
2 0 2 0 2
—<0201020>
2 0 2 0 2
0 2 0
2

After reducing all the entries over the finite field Fz, we get

0 > . (3.2)

o O O
o O O oo
[N ool olo N
o O O oo
o O O

0
Therefore, it is clear from (3.2) that there exist a sub-rhotrix of R? which is of the form < 01 0 >
4 Conclusion

We considered the rhotrices of 3-dimensions and derived some properties related to their characteristic
roots. Further, we discussed results related to the heart and sub-rhotrix of n-dimensional rhotrices.
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