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Abstract  We propose to define the Horn’s double hypergeometric functions Hs and
H,4 of matrix arguments and deduce some integral representations for these two functions.
Utilizing the first author’s definitions (Upadhyaya, Lalit Mohan and Dhami, H.S., Matrix
generalizations of multiple hypergeometric functions; #1818, Nov.2001, IMA Preprint
Series, University of Minnesota, Minneapolis, U.S.A. (Retrieved from the University of
Minnesota Digital Conservancy, http://hdl.handle.net/11299/3706); Upadhyaya, Lalit
Mohan, Matrix Generalizations of Multiple Hypergeometric Functions by Using Mathai’s
Matrix Transform Techniques (Ph.D. Thesis, Kumaun University, Nainital, Uttarakhand,
India), #1943, Nov. 2003, IMA Preprint Series, University of Minnesota, Minneapolis,
U.S.A. ( https://www.ima.umn.edu/sites/default/files/1943.pdf
http://www.ima.umn.edu/preprints/abstracts/1943ab.pdfhttp://www.ima.umn.edu/
preprints/nov2003/1943.pdf

http://hdl.handle.net/11299/3955

https://zbmath.org/?q=an:1254.33008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.2172\&rank=52).
(Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.
net/11299/3955)) of the Srivastava’s triple hypergeometric functions Ha and Hp of
matrix arguments, we further establish a number of integral representations for these
two Srivastava’s triple hypergeometric functions, which generalize some of the recent
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results of Choi, Hasanov and Turaev (Choi, Junesang, Hasanov, Anvar and Turaev,
Mamasali, Integral representations for Srivastava’s hypergeometric function Hg, J. Ko-
rean Soc. Math. Educ. Ser. B: Pure Appl. Math., Vol. 19, No. 2 (May 2012),
(2012), 137-145: http://dx.doi.org/10.7468/jksmeb.2012.19.2.137; Choi, Junesang,
Hasanov, Anvar and Turaev, Mamasali, Integral representations for Srivastava’s hyper-
geometric function Ha, Honam Mathematical J., Vol. 34, No. 1, (2012), 113-124:
http://dx.doi.org/10.5831/HMJ.2012.34.1.113; Choi, Junesang, Hasanov, Anvar and
Turaev, Mamasali, Decomposition formulas and integral representations for some Exton
hypergeometric functions, Journal of the Chungcheong Mathematical Society., Vol. 24,
No. 4 (December 2011), (2011), 745-758) for these two of the Horn’s double and the Sri-
vastava’s triple hypergeometric functions. For proving our results for these functions of
matrix arguments we invoke the Mathai’s matrix transform technique for real symmetric
positive definite matrices as arguments. We conclude by stating the corresponding par-
allel results for these Horn’s double and the Srivastava’s triple hypergeometric functions,
when their argument matrices are complex Hermitian positive definite, with the remark
that these parallel results can be easily proved by following our given lines of proofs and
by employing the corresponding known results available in the literature.

Key words  Hypergeometric functions, Horn’s double hypergeometric functions, Sri-
vastava’s triple hypergeometric functions, Exton’s triple hypergeometric function, matrix
argument, matrix transform, real positive definite, Hermitian positive definite.
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1 Introduction

The study of multiple hypergeometric functions of matrix arguments is still a developing field of re-
search. Some initial work in this direction, as far as we are aware of, was initiated by Mathai [4,6] which
led the first author of this paper to investigate the multiple hypergeometric functions to a greater extent
in his doctoral dissertation [2] which also contains a detailed study of generalized Horn’s functions of
matrix arguments [18]. In this paper we continue this study of the first author for some double and
triple hypergeometric functions with matrix arguments. In particular, we propose to define the Horn’s
double hypergeometric functions Hs and Ha of matrix arguments with real symmetric positive definite
and Hermitian positive definite matrix arguments and establish some integral representations for them.
We also aim to deduce some integral representations for the Srivastava’s [9, 10] (see also Exton [11]
and Srivastava and Karlsson [16]) triple hypergeometric functions H4 and Hp of matrix arguments
by recalling the first author’s definitions [1, 2] for these functions when the argument matrices are real
symmetric positive definite matrices. Based on the results available in the literature (see, Mathai [6]
and Mathai and Provost [7]) we also analogously write the definitions of the Srivastava functions Ha
and Hp for complex (Hermitian positive definite) matrix arguments and state the complex analogues of
all the results proved by us for the case of real symmetric positive matrix arguments in the concluding
section of the paper. We remark that all the results that we intend to prove in this paper provide the
matrix generalizations of the corresponding results available in the literature due to the recent works of
Choi, Hassanov and Turaev [12,13,14]. It is pertinent to mention here that the results earlier proved by
the first author in his doctoral dissertation [2] contain some double and triple Laplace type integrals for
the Srivastava’s triple hypergeometric functions Ha, Hg, Hc of matrix arguments and while the first
author has very recently introduced a very robust and versatile generalization of the classical Laplace
transform, called the Upadhyaya transform [17], for which he has also given the generalizations to the
case of real symmetric positive definite matrix arguments and complex (Hermitian) positive definite
matrix arguments respectively in the sections 9 and 10 of this paper [17]. It still remains an open
problem to explore and develop the theory of these matrix generalizations (see (9.3) , p.503 and (10.3),
p.504 in [17]) of the Upadhyaya transform and also to investigate the Upadhyaya type integrals (i.e.,
integrals involving the Upadhyaya transform) for these and other multiple hypergeometric functions of
matrix arguments both in the real as well as in the complex cases.
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Horn’s double and Srivastava’s triple hypergeometric functions of matrix arguments ... 151

The scheme of the paper now follows. We mention the preliminary results and definitions in the first
section of the paper for functions of real symmetric positive definite matrix arguments. The integral
representations concerning the Horn’s functions Hs and Hy of real symmetric positive definite matrices
are deduced in the second section and those concerning the Srivastava’s triple hypergeometric functions
are proved in the third section of the paper. All the matrices appearing in the sections 1 to 3 of this
paper are real symmetric positive definite matrices of order (p X p), while those appearing in the fourth
section of the paper are (p x p) complex (Hermitian) positive definite (see [8]). The Mathai’s matrix
transform technique [15] is employed by us to deduce our results.

For the notations used in this paper, we mention that A > 0 means that the matrix A is positive
definite, A2 represents the symmetric square root of the matrix A, A’ denotes the transpose of the
matrix A, Re(.) the real part of (.), while |A| denotes the determinant of the matrix A. 0 < X < I
means that X > 0 and /—X > 0, i.e.. all the eigenvalues of X lie between 0 and 1 (see, Mathai [4, p.3]).
The matrix transform (M-transform) of a function f(X) of a (p X p) real symmetric positive definite
matrix X was defined by Mathai [15] as follows:

Mi(p) = [ X p(xax (L.1)

for X > 0 and Re(p) > (p—1)/2, whenever My (s) exists. Some preliminary definitons and results that
will be used by us in the sequel now follow:

Theorem 1.1. Mathai [3, (2.24), p.23] - Let X and Y be (p x p) symmetric matrices of functionally
independent real variables and A a (p X p) non singular matriz of constants. Then,

Y = AXA = dY = |APTdX (1.2)

and
Y =aX = dY = a??PTV/24x (1.3)

where a is a scalar quantity.

Theorem 1.2. Gamma integral (Mathai [4, (2.1.3), p.33 and (2.1.2), p. 32]) -
/X . | x| P27t (BX) g x — | B|7°Tp(a) (1.4)
>

for Re(a) > (p — 1)/2, where,
Iy(a) = 7P~ D7 ()0 (a — 1) Ta—257) (1.5)
for Re(a) > (p—1)/2 and tr(X) denotes the trace of the matriz X.

Theorem 1.3. Type-1 Beta Integral (Mathai [/, (2.2.2), p.84])-

Bp(a’ﬁ):/o ; I|X‘a—(p+1)/2|1_X|B—(p+1)/2dX:%ﬂf’(ﬁﬁ)) (1.6)
<X< P

for Re(@) > (p—1)/2,Re(8) > (p—1)/2.

Theorem 1.4. Type-2 Beta Integral (Mathai [/, (2.2.4), p.36])-

By ) = [ ey ay = e (1.7

for Re(a) > (p —1)/2,Re(8) > (p—1)/2.
Theorem 1.5. (Mathai [4, (6.13), p. 84] )- For p =2,

L ()T (5+3) Tela

47pp1_‘p (aTﬂfp) Uy (%Jri*p) Fp(a_fp)

Q:Q:m AS

& rusuchmions
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Definition 1.6. (Mathai [4, (6.3), p.76]) The M-transform of Gauss’s hypergeometric function 2 Fy of
matrix argument
2F1 = 2F1 (a, b; C, 7X)

M (2F) :/ |X|P~ P2, (a,b; 0, — X)) dX
X>0

is given by

_ Iy (a=p)Tp (b—=p)Tp(c)Tp (p)
=T L@LO ) (19)
for Re(p) > (p—1) /2.

Definition 1.7. (Mathai [4, c.f. (2.3.5), p.38]) The M-transform of the Lauricella function Fc of n
variables
Fo = Fo(a,byer, ... en;—X1, .., —Xn)

is given by

for Re (pj,c; —pj,a—p1—...—pn,b—p1—...—pn)>(p—1)/2,7=1,...,n.

Now we reproduce the definition of the Srivastava functions Ha, Hg of matrix arguments due to the
first author (see, [1,2]).

Definition 1.8. The Srivastava function H4 of matrix arguments
Ha = Ha(a1,a2,a3;¢1,¢2; =X, =Y, = Z)

is defined as that class of functions which has the following matrix-transform (M-transform):

M (Ha) = / / / |X|p17(p+1)/2‘Y|p27(p+1)/2‘Z|psf(p+1)/2X
X>0JY>0/2Z>0
Ha (al,ag, as; C1, C2; —X, —K —Z) dXdYdZ

_ Lol —p1—p3)Up(a2 —p1 —p2)Up(as —p2 —p3)
Ty (a1) Ty (a2) Tp (as)
Tp (1) Ty (c2) Tp (p1) Ty (p2) Ty (p3)
Tp(c1 —p1) Ty (c2 — p2 — p3) (111)

for Re (a1 — p1 — p3, a2 — p1 — p2,a3 — p2 — p3,c1 — p1,c2 — p2 — p3,pi) > (p — 1) /2, where, i = 1,2, 3.

Definition 1.9. For the Srivastava function Hp of matrix arguments

Hp = Hp (a1,a2,a3;c1,c2,¢c3;,—X, =Y, —=Z)

M(HB)z/ / / |X|P1*(P+1>/2|Y|P2*(P+1)/2|Z‘P3*(P+1)/2X
x>0JY>0J2z>0

Hpg (a1,a2,as3;c1,c2,c3; — X, —Y,—Z)dXdYdZ

_Tplai—p1—p3)Up(a2 —p1 —p2)Up(as —p2 —p3)
Ty (a1) Ty (a2) Ty (as)

Ip (1) Ty (e2) Tp(e3)Tp (p1) Tp (p2) Tp (p3)
Fp (Cl - p1) Fp (CQ — pg) Fp (03 — /)3) (112)

for Re (a1 — p1 — p3, a2z — p1 — p2, a3 — p2 — p3,¢; — pi, pi) > (p — 1) /2, where, i = 1,2,3.
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2 Definitions of the Horn’s functions H3 and H,4 of matrix arguments and
their properties

Now we proceed to define the Horn’s functions Hs and Hj of matrix arguments when the argument
matrices are real symmetric positive definite (see also Upadhyaya and Dhami [18]).

Definition 2.1. The Horn’s function Hs of matrix arguments
Hs = Hs (a,b;c; —X,-Y)

is defined as that class of functions for which the M-transform is the following:
M(Hs) = / / ‘X|P1*(:ﬂ+1)/2‘Y|P2*(P+1>/2H3 (a,b;c;— X, —Y)dXdY
X>0Jy>0

Tp(a—2p1 —p2)Tp (b—p2) Ty (c) Tp (p1) Tp (p2)

= 2.1
T, (@) Ty (0) Ty (¢ — p1 — p2) @1)
for Re (a —2p1 — p2,b — p2,¢ = p1 — p2,p1,p2) > (p— 1) /2.
Definition 2.2. For the Horn’s function H4 of matrix arguments
Hy = Hy(a,b;¢;—X,-Y)
M(Hy) = / / | X |1 P02y 2= D2 (0, by e, d; — X, —Y ) XY
x>0Jv>0
Ty (a—2p1— p2)Ty (b= p2) Ty ()T, (d) T (p1) T (2) o)

Fp() p(b)rp(C_Pl) P(d_P2)
where, Re (a — 2p1 — p2,b — p2, ¢ — p1,d — p2, p1,p2) > (p— 1) /2.

The following theorem generalizes the equation (4.1), p.754 of Choi et al. [14] only for the case of
(2 x 2) matrices:

Theorem 2.3. Forp=2,

Hs (a,b;c; —X,-Y) = L/ |T|b (p+1)/2|I T~ b=(p+1)/2
(0)Tp(c—b
—a 1 1
[+72y 7| 2F1( 2= S pe—bi—a(T T2y T-TVrx (23)

X(I 1) (I n T1/2YT1/2> B

for Re(c—b,b) > (p—1) /2.

Proof. Taking the M-transform of the right side of (2.3) with respect to the variables X,Y and the
parameters pi, p2 respectively, we have,

/ / |X|p1_(p+1)/2\Y|p2_(p+1)/2‘I—|—Tl/QYTl/Q _ax
X>0JY>0
-1
o Fy (“"QH a +i —b; —4(I+T1/2YT1/2) (I-T)"% x (2.4)

—1
X(I —T)? (I +T1/2YT1/2> ) dXdY
Applying the transformations
1 _
X, = 4(1 + TI/QYT”Q) (I —T)/2X(I —T1)"? (1 + T1/2YT1/2)
Yl — T1/2YT1/2
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then, from Theorem 1.1 it follows that
dX, = 4p(p+1)/2‘] + Yl‘f(erl)ll _ T|(p+1)/2dX
for constant Y, hence, Y7. In the light of this (2.4) yields,

A7PPYT TP / / ‘[ 42y l/2? 2p1_a|X1‘Pl—(P+1)/2|Y‘P2—(P+1)/2X
X1>0Jy>0
1

+1
oF (“ . ,g+ 1;07b;7X1> dX,dY,

which, on writing the M-transform of 2 F; with the help of (1.9) gives

Fp(a__pl) ( +4—,01)Fp(c—b)rp(p1)x
Ly () Ty (5 +3) To(c—b—p1)

/ |Y‘p2*(p+1)/2’1+T1/2YT1/2 2p1
Y >0

4—1991 |I _ T|—Pl

ay

This expression on simplification with the help of (1.8) produces
Lp(a=2p1) Ty (c=b) Ty (p1)
Ip(a)Tp(c—b—p1)

Applying the transformation Y; = TV2YT"? with dy, = |[T|P™V/2dy, |vi| = |T||Y]| (from (1.1))
transforms into

i7" / \Y|92*<P+1>/2‘I Ly gy (2.5)
Y >0

Ip(a—2p1)Tp(c—b)T (pl)|T‘ 2L —T|” p1/ |Y1|p2_(p+1)/2|l+Y1\_((a_2”1_”2)+p2)dY1
Iy(a)Tp(c—b—p1) Y1>0

in which Y1 can now be integrated out by appealing to a type-2 Beta integral ((1.7)) to yield

Lp(a=2p1—p2) Ty (c=b)Tp (1
Ip(a)Tp(c—b—p1)
Substituting (2.6) on the right side of (2.1) yields

)Ty (p2)|T|7p2\IfT\7p1. (2.6)

Uy (a—2p1 — p2) Uy () Ty (p1) Uy (p2) /’ TP =2~ Pt/ pembomm e /2g
Ly (a) Ty (0) Ty (¢ — b — p1) 0

in which T can at once be integrated out by using a type-1 Beta integral ((1.6)) to arrive at M (H3)
as given by (2.1), thus proving the theorem. O

On similar lines the following generalization of equation (4.2), p. 755 of Choi et al. [14] can be proved
for (2 x 2) matrices:

Theorem 2.4. Forp =2,

Ha (a,bc1, 00— X, —Y) = Ly (c2 / (TP~ P +D/2| [ _ e b=+ D)/2,
F () P(c2_b (2 7)
—a 1 —1
I+T1/2YT1/2‘ 2F1< ; ; i;cl;—4(1+T1/2YT1/2> X([+T1/2YT1/2) )dT

for Re (c2 — b,b) > (p—1) /2.
In the following theorem, we find the M-transform of the Horn’s double hypergeometric function
Hy (e, B57,0; —X —Y,—Z) for (p X p) real symmetric positive definite matrices X,Y, Z:
Theorem 2.5.
M (Hi (@, 57,6, X — Y, ~7))
_Tpla=2p1—=2p2 = p3) Ty (B=p3) Uy (1) Up (6) Tp (1) T'p (p2) T'p (p3) (2.8)
Ly (a) Ly (ﬂ)F (v=p1— pz) » (6= ps)

for Re (o — 2p1 — 2pa — p3, 8 — p3, ¥ — p1 — p2,6 — p3, p1,p2,p3) > (p— 1) /2.
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Proof. Taking the M-transform of the left side of (2.8) with respect to the variables X,Y, Z and the
parameters p1, p2, p3 we get

M (Hy (o, 57,0, —X =Y, —2))

:/ / / |X‘p17(p+1)/2|Y‘p27(p+1)/2|Z‘937(p+1)/2X (2.9)
x>0Jy>0J2Z>0

Hy(a,B;7,0;—X =Y, —Z)dXdYdZ

Put U = X + Y, then for fixed Y, dU = dX, and X = U — Y may be written as X = UY?(I —
U=Y2yUu=Y2) U2 in which on letting V. = U~Y2YU /2, we get X = UY?(I —V)U?, from
where it follows that |X| = |U||I — V|, where, 0 < V < I. Further, V = U~ Y2YU /2 gives dV =
|U|=®*D/2qy from (1.1) and |V| = |U|7* |Y]. With these substitutions (2.9) takes the form

M (Hy (v, 8;7,0; =X =Y, =Z))
_ / / / ‘U|pl+p2f(p+l)/2|1_V‘m7(p+1)/2|V‘pzf(p+1)/2|Z‘psf(p+1)/2X (2.10)
U>0Jo<v<riJz>0

Hy (o, 8;7,0; —U,—Z)dUdVdZ
The above expression can be rewritten immediately as

M (Hy (o, B57,0; =X =Y, —Z))

_ [/ / |U|01+P2*(P+1)/2‘Z|P3*(P+1)/2H4 (v, B; 7, 0; —U, —Z) dUdZ | x
U>0J2Z>0

I
/ |V|sz(p+l)/2u _ V‘m*(zﬁl)/?dv
0

in which on writing the M-transform of the Hy function from (2.2) and integrating the V- integral
by using a type-1 Beta integral ((1.6)) and canceling out the common factor I, (p1 + p2) from the
numerator and denominator at once gives the expression on the right hand side of (2.8). O

In a similar manner we may also establish the following result:
Theorem 2.6.
M (Hy (o, B57,0; =X, =Y — 7))
_ Dp(a—2p1 —p2—p3) T (B—p2—p3) Tp (1) Tp (6) T'p (p1) I'p (p2) I'p (p3) (2.11)
Lp(@)Tp (B)Tp (v — p1) Tp (8 — p2 — p3)
for Re (a —2p1 — p2 — p3, 8 — p2 — p3,7 — p1,0 — p2 — p3, p1,p2,p3) > (p— 1) /2.

3 Properties of the Srivastava’s functions H 4 and Hp of matrix arguments

In this section we prove some results concerning the Srivastava’s triple hypergeometric functions H 4
and Hp of matrix arguments. The following theorem generalizes the result of the equation (2.13) p.142
of Choi et al. [12] for the case of (2 X 2) real symmetric positive definite matrices only.

Theorem 3.1. Forp =2,

Hpg (a1,a2,a3;¢1,c2,c3;—X, —Y, —Z)

r (al + a2 + a3 ! ! a1 — a1+az— ag—
_ . (21)1" T (23)/0 /0 7| (p+1)/2|5| 1+az (p+1)/2|I_T| 2=(p+1)/2y
P P P

‘I . S‘agf(p+1)/2Fé3) |:a1 +ax+az+1 a1 +a2+as 1 (31)

5 ) B +Z;C1762,C3;
—4(I = T)?*TY28 X STY?(I — T)'/?, —4(I — T)"/*(1 — 8)"/28 2y $Y*(1 — §)Y/*(I — T)"/?,

—4(I — S)/PTY2 812 782l (] — 3)1/2] drds

for Re (a1, a2,a3) > (p — 1) /2, where Fg”) represents the Lauricella function Fo of three variables.
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Proof. We take the M-transform of the right side of (3.1) with respect to the variables X,Y, Z and
the parameters p1, p2, p3 respectively to get

/ / / |X‘Pl*(P+1)/2|Y‘pzf(p+1)/2|Z‘psf(p+1)/2Fé3) a1 +az +az +1 7 ar +az +as i l;
X>0JY>0J2>0 2 2 4

c1,c2,c3;—A(I — TV 2TY2S X ST (1 — T)Y/?, —4(1 — T)Y/*(1 — 8)/25Y 2y §V/2(1 — $)/2(1 — T)*/,

—A(I — 8)'/2TV28 2 78V 22 (1 — §)V?| dXdY dZ
(3.2)
Employing the transformations

X1 =4(I = T)*TY?SXSTY*(I —T)"/?,
Yy =4 = T)Y*(1 = §)Y/28' 2y §Y/2(1 — §)V/2(1 — T)"/?,
71 = 4(I — 3)1/2T1/251/2ZS1/2T1/2(I _ 5)1/27
with
dX, = 4P(P+1)/2|I _ T|(P+1)/2|T|(29+1)/2‘Sl(17+1)d)(7
dy; = 4p(p+1)/2|1 _ T|(p+1)/2|1 _ S|(”+1)/2\S|(p+l>/2dY,
A7, = 4p(p+1)/2|[ _ S\(p+1)/2|T|(p+1)/2|5|(p+1)/2dZ,

(from (1.1)) and
|1 Xa| =47 |1 = T||T||S]* |X],|Ya| = 4" |I = T||I = S||S| Y|, |Z1| = 4" |I - S| |T||S5]|Z]
in (3.2) renders it into the following form
4~ P(P1+p2+p3) |T|—p1—ps = T|—p1—p2 |S|—2p1—ﬂ2—ps ‘[ _ S\_’)2_p3 %

/ / / X [P /2y e (012 7 ps = (01 /2
X1>0JY1>0J21>0

1 1
Fég) {a1+a2+a3+ a1+a2+a3_|__;cl,c2,cs;—X1,—Y17—Z1 dX,1dY1dZ;,

2 ’ 2 4
which, on writing the M-transform of the Fég) with the help of (1.10) lends

4~ P(P1+p2+p3) |T|*Pl*93 |I _ T|*P1*92 |S‘*201*P2*p3 ‘[ _ S‘*P2*p3 %

{

An application of (1.8) to the last expression renders it into the form

T e

I{Fp(cj)rp(ﬁj)}}rp(%w—pl—pz—ps)lﬂp(%-i-i—pl—pz—p3)

3
I, (et r, (s 4 ) { Ml - "")}

|T|P1=P3|T — T|~PLF2 |S|—2m—pz—ps I — §|7P2=r3x

{ 'Ii[1 {Tp (¢;) Tp (PJ)}} Tp (a1 + a2 +as — 2p1 — 2p2 — 2p3)

Fp(a1+a2+a3){ﬁ Fp(cj_pj)}
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Substituting this expression on the right side of (3.1) gives

{ 'li[l {Fp (Cj)rp (pj)}} Iy, (al + a2+ as — 2p1 — 2p2 — 2p3)

X

I'p (a1) T'p (a2) T'p (as) { _1_[1 Iy (¢ — Pj)}
j=
I I
//|T|a1—p1—ﬂs—(p+1)/2|[_T|a2—p1—p2—(p+1>/2|S‘a1+az—2p1—ﬂ2—ﬂs—(p+1)/2X
o Jo

|[ . S|d3*pz*pa*(p+l)/2deS

which on integrating 7" and S by applying a type-1 Beta integral ((1.6)) gives M (Hp) as given by
(1.12). O

The following theorem gives the generalization of equation (2.17) p.119 of Choi et al. [13].

Theorem 3.2.
Ha (a1,a2,a3;¢1,c2; —X, =Y, —2)

I
_ Tp(ar +a2) / (T~ (+D/2) [ o2+ )/2,
I'p (a1) T (a2) Jo

(3.3)
Hy (a1 + a2, as;ci, c2; —(I — T)1/2T1/2XT1/2(I — T)1/2,
(I -T2y (I —T)? T1/2ZT1/2) T

for Re(a1,a2) > (p—1) /2.

Proof. We take the M-transform of the right side of (3.3) with respect to the variables X,Y, Z and
the parameters p1, P2, p3 to get

/ / / |X|Pl*(P+1)/2|Y|P2*(P+1)/2|Z|P3*(P+1)/2><
x>0Jvy>0J2>0

Hy (a1 + az,as;c1,co; —(1 — T)1/2T1/2XT1/2(I — T)l/z, (3.4)
(I =Ty -1)"* = T1/2ZT1/2> dxXdydz
Appealing to the transformations,
X, = =T)"*TV2XT V21 - T)V2 vh = (I —=T)*Y (I -T)"? 2, =T"*27T"/?

with
dX, =|I - T\(p+1)/2|T|(p+1)/2dX, ay, = |I — T|(p+1)/2dY, dZ, = |T|(p+l)/2dZ
(from (1.1)) and
|Xal = [ =TIT|X], V1] = [I = T|[Y],|Z:] = |T|]Z]
in (3.4) produces

|T|fp1fps|17T‘fp1fpz / / |X1|Pl*(?+1>/2‘yl|P2*(P+1>/2|Z1|P3*(P+1)/2><
X1>0JY;>0J2Z,>0

Hy (CLl + a2,as;c1,c2; — X1, —Y1 — Zl) dX1dY1dZq,

which on writing the M-transform of the H4 function by utilizing the Theorem 2.6 generates

‘T|—P1—p3|1 _ T|—p1—p2 I'y (a1 +a2 —2p1 — p2 — p3) Iy (a3 — p2 — pa)
I'p (a1 +a2) Ty (a3) I'p (1 = p1) I'p (c2 — p2 — p3)
Ty (c1) Ty (c2) Ty (p1) Ty (p2) Tp (p3) -

Substituting this expression on the right side of (3.3) and integrating out 7' by using a type-1 Beta

X

integral ((1.6)) produces M (H,4) as given by (1.11). O
& Eras
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The following theorem gives the generalization of equation (2.1) p.115 of Choi et al. [13].

Theorem 3.3.
HA (al,a2,a3;cl,02; 7X *Y 7Z)

I (S a s—a
=T (T, (s —ar) / [y R e (35)
P

Ha (s,ag,ag; c1, Ca; 7T1/2XT1/2, -Y, 7T1/2ZT1/2) dT

for Re(s —ai,a1) > (p—1) /2.

Proof. This theorem can be proved in a similar manner as the above theorem by first taking the M-
transform of (3.5) with respect to the variables X,Y, Z and the parameters p1, p2, p3 and then applying
the transformations X7 = T1/2XT1/2,Y1 =Y, 71 = TY2727%2 and then substituting the resulting
expression on the right side of (3.5) after writing the M-transform of the involved H4 function in the
integrand on the right side of (3.5) and finally integrating out 7' by applying a type-1 Beta integral to
arrive at M (Ha). O

The following Theorems 3.4 to 3.7 respectively generalize the results in equations (2.2), (2.3), (2.4) and
(2.5) pp.115-116 of Choi et al. [13].

Theorem 3.4.
Ha (a1,a2,as3;c1,c2; —X, =Y, —Z)

I (S a s—a
ey T e (36)
P

Ha (a1,s,a3; c1, o —TY2XTY2 T2y T2, fZ> ar

for Re (s —az,a2) > (p—1) /2.

Theorem 3.5.
Ha (a1,a2,a3;c1,c2; =X, =Y, —Z)

r (S a 1)/2 s—a 1)/2
=T, (a0) Ty (5 — a3) / [Ty =T (3.7)

Ha (04,&2,8;(31,(32; X, —TY2yT"? —T1/22T1/2> dT

for Re (s —as,as) > (p—1) /2.

Theorem 3.6.
Ha (a1,a2,a3;¢1,c0; =X, Y, —Z)

T'p (1) s—(p+1)/2 e1—s—(p+1)/2
= et [ pp e/ e
e [ 11| (38)

Ha (al,ag,a3;s,02; —TV2XTY? Y, —Z)dT
for Re(c1 —s,s) > (p—1)/2.

Theorem 3.7.
HA (CL1,CL2,CL3;61,CQ;7X *Y *Z)

Iy (C2 / (p+1)/2 (p+1)/2
[ < S T s—(p =T co—s—(p
T (cs —5) |T| | \ (3.9)

Ha <a1,a2,a3;cl,s; X, —TY?yT"? —Tl/?‘ZTl/Q) dT
for Re(cz —s,8) > (p—1)/2.

Now we prove in the following theorem the generalization of equation (2.6) p.116 of Choi et al. [13].
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Theorem 3.8.
Ha (a1,a2,a3;¢1,c2; —X, =Y, —2)

1 —a —a
= T ( ;—‘F(C(Q) )/ |T‘ﬂ3—(17+1)/2|[_T|C2—‘13—(P+1)/2 ]+T1/2YT1/2 2’I+T1/2ZT1/2 !
plaz)lplC2—as) jo
—1/2 —1/2
Py (al,ag;cl;—(I—i-Tl/QZTl/Q) (I+T1/2YT1/2) X x
(I +T1/2YT1/2>_1/2 (I +T1/2ZT1/2>_1/2) AT
(3.10)

for Re(cz —as,a3) > (p—1) /2.

Proof. On taking the M-transform of the right side of (3.10) with respect to the variables X,Y, Z and
the parameters p1, p2, p3 respectively we get,

/ / / ‘X|p17(p+1)/2|Y|p27(p+1>/2|Z|psf(p+1)/2‘I+T1/2YT1/2’—a2)I+T1/QZT1/2 _alx
Xx>0JY>0J2Z>0

—-1/2 —1/2
2F1 ((11,(12; C1; —(I + T1/22T1/2) (I + T1/2YT1/2) X x

—1/2 —1/2
(I+T1/2YT1/2> (1+T1/22T1/2> )dXdeZ

(3.11)
The application of the transformations

v, = TI/QYTI/Q, 7y = Tl/QZTl/Q7
X, = <I + T1/2ZT1/2) e (I + T1/2YT1/2) P (1 + Tl/QYTl/Q) e (1 + T1/22T1/2> -

e, X1 = +2) I +y) VPXT+ Y1) VP + 20)7 V2

1/2

with
dXy = |1+ Zo|" P21 4 vy |~ tY20x dy, = |T|PHY 20y, dz, = |T|PHY 2az

and
X1 = [T+ Z| T+ Y| X | ] = [T Y], 12 = [T 2]

in (3.11) gives
|T|—p2—ps / / / |X1|01—(p+1)/2|yl‘pz—(p+1)/2|Zl|p3—(p+1)/2u + Yl‘—(rm—m—pz-&-pz) %
X1>0Jy1>0J21>0

|I + Z; \7(a17p17p3+03)2F1 (a1, a2;c1;—X1) dX1dY1dZ,

which, on writing the M-transform of the 2 F; function by (1.9) and integrating out Y7 and Z; by using
a type-2 Beta integral ((1.7)) yields

|T|~P2—rs Lp () Ty (p1) T (?21)) (I(;pl )(ll?p) (ilz;g‘?pchl_*pfi) Iy (a1 — p1 — ps3) (3.12)

Substituting this expression on the right side of (3.10) and integrating out 7" by using a type-1 Beta
integral ((1.6)) yields M (Ha) as given by (1.11), thus finishing the proof. O

4  Corresponding results for functions of complex matrix argument

We now state the results corresponding to some of the necessary definitions and results mentioned
and proven in the sections 2 and 3 above when the argument matrices of the involved hypergeometric
functions are complex Hermitian positive definite. This is necessary in view of the remarks made by
the first author in the section 4, pp. 213-215 of his paper [8]. It may be mentioned here, as also
pointed out earlier that all the matrices appearing in this section of the paper are (p X p) complex
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Hermitian positive definite matrices. The results corresponding to the Jacobians of (complex) matrix
transformations and the corresponding definitions of the elementary functions (like the type-1 and
type-2 Beta integrals etc.) are available in the monograph of Mathai [6, Chapter 3]. We prefer here
to keep the same notation here for complex matrices as we have used in the preceding sections of
this paper, unlike that used in the work of Mathai [6], where, the complex matrices are represented
by placing a tilde (~) sign over the symbol of the matrix. It is also pertinent to mention here that
the complex analogues of the results of the Theorems 2.3, 2.4 and 3.1 have a different structure (see,
Mathai [6, Chapter 6, p.399]) so they will not be mentioned here. A well known fact available in the
literature is that for writing the complex analogues of the relevant definitions and results proved above
in the sections 2 and 3 is that we have to replace the expression (p + 1) /2 appearing in the power
of the determinants of the various matrices involved in the integrands of the results deduced above
by p and the condition of convergence of the integral, which in the case of real symmetric positive
definite matrices is Re (.) > (p — 1) /2, the same has to be replaced by the expression Re(.) > (p — 1)
in the complex case (see Mathai [6, pp. 364-365] and see also Mathai and Provost [7]). The complex
analogues of the definitions and results given in section 1 above from (1.1) through (1.10) except the
result of Theorem 1.5 ((1.8)) are available in Mathai [6, Chapters 3 and 6]. By using these results and
following the parallel steps as detailed above the complex analogues of the above results of sections 2
and 3 can be proved. The interested reader is referred to Mathai [6, Chapters 5 and 6] by us for a
detailed discussion about this. Another thing to be noted here is that in this section of the paper |A|
stands for the absolute value of the determinant of the matrix A of complex elements.

Now we proceed to give below in the Definitions 4.1 and 4.2 the M-transforms of the Srivastava hyper-
geometric functions H4 and Hp of complex arguments which are respectively the complex analogues
of the Definitions 1.8 and 1.9 respectively:

Definition 4.1. The Srivastava function H4 of complex matrix arguments
Ha = Ha(a1,a2,a3;5¢1,c2; =X, =Y, = Z)

is defined as that class of functions which has the following matrix-transform (M-transform):

M(HA) :/ / / |X‘pl_p|Y|P2_p|Z|p3_pX
x>0Jvy>0Jz>0
Ha (a1,az2,a3;c1,c2; — X, Y, —Z2)dXdYdZ

_ Tplar—p1 —p3) Up (a2 — p1 — p2) Up (a3 — p2 — p3)

Ty (a1) Ty (a2) Tp (as)

Tp(e1) Ty (e2) Ty (p1) Ty (p2) Ty (p3) (4.1)
r, (Cl — pl)rp (02 —pP2 — pa)
for Re (a1 — p1 — p3, a2 — p1 — p2,a3 — p2 — p3,c1 — p1,¢2 — p2 — p3, pi) > (p— 1), where, i = 1,2,3.

Definition 4.2. For the Srivastava function Hp of complex matrix arguments

Hp = Hp (a1,a2,as;c1,c2,¢3,—X, Y, —Z)

M(HB) :/ / / |X|P1—P‘Y|P2—P|Z|P3—PX
X>0JY>0JZ>0
Hg (a1,a2,a3;c1,¢2,¢3;—X, =Y, —Z)dXdYdZ

_ vl —p1—p3)Up(a2 —p1 —p2) Ty (as —p2 —ps)

Ty (a1)Tp (a2) Ty (as)

L'y (e1) Ty (e2) Tp (e3) T'p (p1) Ty (p2) 'y (p3)
Tp(cr—p1)Typ (c2 — p2) Ty (c3 — p3) 2

for Re(al —P1—P3,02 — P1 — P2,03 — P2 — P3,Ci 7p7~7107«) > (pi 1)7 Wherea 1= 15273'
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Definition 4.3. The Horn’s function Hs of complex matrix arguments
H3 = H3 (a‘7 b7 &) 7Xa 7Y)

is defined as that class of functions for which the M-transform is the following:
M(H3s) :/ / | X1 PIY |27 P Hs (a, by c; — X, —Y) dXdY
x>0Jy>0

Ty(a—2p1—p2) Ty (b—p2) Ty (€) Ty (p1) Ty (p2)
= I, (a) T, ()T (c— p1 — p2) (4.3)

for Re (a — 2p1 — p2,b — p2,c — p1 — p2,p1,p2) > (p—1).

Definition 4.4. For the Horn’s function H4 of matrix arguments
Hy = Hy(a,b;¢;—X,-Y)
M (Hy) :/ / | X" PV |27 Hy (a,bse,d; — X, =Y ) dXdY
x>0Jvy>0

_ I'p(a—2p1 —p2) Tp (b—p2) Tp (¢) Ip (d) T'p (1) T'p (p2) (4.4)
Lp(a)Tp () Ty (¢ = p1) Ty (d — p2)
where, Re (a — 2p1 — p2,b — p2,¢ — p1,d — p2,p1,p2) > (p—1).

The following Theorems 4.5 and 4.6 are respectively the complex analogues of the results of the Theo-
rems 2.5 and 2.6.

Theorem 4.5.
M (Hs (a0, 857,06, —X =Y, —Z))

/ / / |X|Pl P|Y|P2 P‘ZVJ% P
X>0JY>0JZ>0

(4.5)
Hi(a,B;7,0,—X — Y, -Z)dXdYdZ
_Tpla—=2p1—=2py —p3) Ty (B—=p3) T (1) Ty (6) Tp (1) T'p (p2) T'p (p3)
I'p (05) Ty (/3) Lp(y—=p1—p2)Tp (6 — ps3)
for Re (o — 2p1 — 2p2 — p3, B — ps,y — p1 — p2,0 — p3, p1,p2,p3) > (p—1).
Theorem 4.6.
M (Hy (o, B;7,0; — X, =Y — Z))
/ / / |X|P1 P|Y|P2 P|Z‘P3 px
x>0Jy>0J2>0 (4.6)

Hy(a, 337,60, =X, =Y — Z)dXdYdZ

_ Pp(a=2p1—p2—=p3) T (B=p2—p3) Tp (7) T (6) Tp (p1) Ty (p2) T'p (p3)
Tp(@)Tp (B)Tp (v — p1) Tp (8 — p2 — p3)

for Re (o — 2p1 — p2 — p3, 3 — p2 — p3,y — p1,0 — p2 — p3, p1,p2,p3) > (p—1).

Now we give below in the Theorems 4.7 to 4.13 the complex analogues of the Theorems 3.2 to 3.8
respectively.

Theorem 4.7.
Ha (a1, az2,as;¢1,c2; —X, =Y, —Z)

_ Ty(a1+a0)
Ty (a1) Ty (a2)

Hy <a1 Faz,as;er, ea; —(I — TYY2TYV2XTV(1 — T)/2,

I
/ T\ P | — TP x
0

(I -T2y (I -T)? - T1/2ZT1/2) T
for Re(a1,a2) > (p—1).
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Theorem 4.8.
Ha (al,az,a3;01,02; -X,-Y,-2)

FP
= T‘ll P I — Té ay— P
Ty (1) Ty (s — a1) / T = (48)

Ha <s,a2,a3;cl,02; _TV2XTV? _y, —T1/2ZT1/2> AT
for Re(s —ar,a1) > (p—1).

Theorem 4.9.
Ha (a1,az2,a3;¢1,c0; —X, =Y, —Z)

_ Iy (s) ag—p s—az—p
- e / (T[*2 7|1 = TJ"=*27x (4.9)

Ha (al, $,as; c1,C2; 7T1/2XT1/2, 7T1/2YT1/2, fZ) dT

for Re (s —az,a2) > (p—1).

Theorem 4.10.
Ha (a1, az2,as;¢1,c2; —X, =Y, —Z)

FP (S) /I a3 — sS—az—
— T 3—P I - T 3—P
T, (@) Ty (s —a3) /s |T[" 7] | X (4.10)

Ha <a1,a2,8;01,02; _X,—T'?yT"/?, —T1/2ZT1/2) T
for Re (s —as,as) > (p—1).

Theorem 4.11.
Hy (111,027@35017025 -X,-Y,-Z)

r,
:— T|*=P| — T|~*"Px
(e —s)T /\ I>7"] | (4.11)
Ha (al,a27a3;s,02; ~TVXTY? y, —z)dT
for Re(c1 —s,s) > (p—1).

Theorem 4.12.
Ha (a1,az2,a3;¢1,c2; —X, =Y, —Z)

et AU 1
Ha <a1,a2,a3;cl,s; —X,-TY?yTY?, 7T1/QZT1/2) dT
for Re(ca —s,8) > (p—1).
Theorem 4.13.
Ha (a1,a2,a3;¢1,c2; — X, =Y, —Z)
Ty (c2

— Tas P[ TC2 a3z—p
e (02_%/\| -]

—ai

T + TI/QYTl/Q

‘I + T2 gl /2

1/2 1/2 4.13
2F1<a1,a2;cl;—(I+T1/2ZTl/2) (I+T1/2YT1/2) X x (4.13)

—1/2 —1/2
(1 + T1/2YT1/2) (1 + T1/2ZT1/2) ) dT
for Re(c2 — asz,a3) > (p—1).
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