

Bull. Pure Appl. Sci. Sect. E Math. Stat. 40E(1), 121–126 (2021) e-ISSN:2320-3226, Print ISSN:0970-6577 DOI 10.5958/2320-3226.2021.00012.6 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 115-RPS-DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2021

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

On generalized star $\omega \alpha I$ -closed sets in ideal topological spaces *

V. Pankajam^{1,†} and S. Gowri²

- 1. Department of Mathematics, Sri G.V.G. Visalakshi College for Women (Autonomous), Palani Road, Udumalpet, Tamil Nadu-642128, India.
- 2. Research Scholar, Department of Mathematics, Sri G.V.G. Visalakshi College for Women (Autonomous), Palani Road, Udumalpet, Tamil Nadu-642128, India.
 - $1. \ \, \text{E-mail:} \ \, \text{pankajamgurusamy@gmail.com} \;, \; 2. \ \, \text{E-mail:} \; \; \text{gowrisivakumar95@gmail.com}$

Abstract In this paper, we introduce a new class of sets named as generalized star $\omega \alpha I$ -closed sets in ideal topological spaces and study some of their properties. Further we also define and study the concept of $\omega \alpha I$ -open sets in ideal topological spaces and discuss their properties.

Key words ω -closed sets, $\omega \alpha I$ -closed sets, $\omega \alpha I$ -open sets.

2020 Mathematics Subject Classification 54A05, 54A10, 54C10.

1 Introduction

In [7, 13] the theory of ideal topological spaces was introduced by Kuratowski and Vaidyanathswamy. Ideals in topological space have been considered since 1930. In the year 1990 Jankovic and Hamlett [6] obtained new topologies using older ones and introduced I-open sets in ideal topological spaces which initialized the application of topological ideals in the generalization of most fundamental properties in general topology.

An ideal I is a nonempty collection of subsets of X closed with respect to a finite union. (X, τ, I) is an ideal topological space (ITS) and, in short, it is called an ideal space. For a subset A of X, the local function of A is defined as: $A^* = \{x \in X : U \cap A \text{ does not belong to } I \text{ for every } U \in \tau(x)\}$, where $\tau(x)$ is the collection of all nonempty open sets containing x. From this point onwards now we simply write A^* instead of $A^*(I)$ to avoid any chance of confusion. A Kuratowski closure operator $\mathrm{cl}^*(.)$ for a topology $\tau^*(I,\tau)$ is termed as a *-topology, finer than τ , and is determined by $\mathrm{cl}^*(A) = A \cup A^*$. If $A \subseteq X$, $\mathrm{cl}(A)$ and $\mathrm{int}(A)$ will denote the closure and interior of A in (X,τ) respectively and $\mathrm{cl}^*(A)$ and $\mathrm{int}^*(A)$ will denote the closure and interior of A respectively in (X, τ) .

In 2013 Carpintero et al. [1] introduced the concept of the generalization of ω -closed sets via operators and ideals. In 2014 Maragathavalli and Vinodhini [8] introduced the concept of α -generalized closed sets in ideal topological spaces.

In 2016, Ravi et al. [10] presented the concept of $g^{\#}$ - closed sets in ideal topological spaces. In 2008 Navaneethakrishnan and Joseph [9] introduced the concept G-closed sets in ideal topological spaces. In 2002 Hatir and Noiri [4] presented the concept of decomposition of continuity via idealization. In 1996

^{*} Communicated, edited and typeset in Latex by *Lalit Mohan Upadhyaya* (Editor-in-Chief). Received February 19, 2020 / Revised March 21, 2021 / Accepted April 24, 2021. Online First Published on June 30, 2021 at https://www.bpasjournals.com/.

[†]Corresponding author V. Pankajam, E-mail: pankajamgurusamy@gmail.com

Dontchev [2] discussed about pre-I-open sets with reference to a decomposition of I-continuity. The aim of this paper is to extend the notion of sets in ideal topological spaces by introducing the concept of the $\omega \alpha I$ -closed sets in ideal topological spaces and to study some of their basic properties.

2 Preliminaries

Throughout this paper (X, τ) represent topological spaces. For a subset A of a space (X, τ) , $\operatorname{cl}(A)$, $\operatorname{int}(A)$ denote the closure of A and the interior of A respectively. We recall the following definitions.

Definition 2.1. [6] Let (X, τ) be a topological space. Let I be an ideal defined on X. Then the space (X, τ, I) is termed as an ideal topological space, which satisfies the following two conditions:

- 1. If $A \in I$ and $B \subseteq A \Rightarrow B \in I$.
- 2. If $A \in I$ and $B \in I$, then $A \cup B \in I$.

Definition 2.2. [5,6] A subset A of an ideal topological space (X, τ, I) is termed as

- 1. a pre-I-closed set if $\operatorname{cl}^*(\operatorname{int}(A)) \subseteq A$. If $A \subseteq (\operatorname{int}(\operatorname{cl}^*(A)))$ then A is called a pre-I-open set.
- 2. a semi-I-closed set if $\operatorname{int}(\operatorname{cl}^*(A)) \subseteq A$. If $A \subseteq (\operatorname{cl}^*(\operatorname{int}(A)))$ then A is called a semi-I-open set.
- 3. an α -I-closed set if $\operatorname{cl}^*(\operatorname{int}(\operatorname{cl}^*(A))) \subseteq A$. If $A \subseteq (\operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A)))$ then A is called an α -I-open set.
- 4. a β -I-closed set if $(\operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A))) \subseteq A$. If $A \subseteq (\operatorname{cl}^*(\operatorname{int}(\operatorname{cl}^*(A)))$ then A is called a β -I-open set.
- 5. a regular-*I*-closed set if $A = \text{cl}^*(\text{int}(A))$. If $A = (\text{int}(\text{cl}^*(A)))$ then A is called a regular-*I*-open set.

Lemma 2.3. [6] Let (X, τ, I) be an ideal topological space. Let A, B be subsets of X. Then the following properties hold:

```
1. A \subseteq B \Rightarrow A^* \subseteq B^*,
```

- 2. $A^* = cl(A^*) = cl(A) = cl^*(A)$,
- 3. $(A \cup B)^* = A^* \cup B^*$,
- 4. $(A \cap B)^* \subseteq A^* \cap B^*$,
- 5. $(A^*)^* \subseteq A^*$.

Definition 2.4. [3,5,6,8-12,14,15] A subset A of a topological space X is said to be:

- 1. a generalized closed (-closed) set if $\operatorname{cl}(A) \subseteq U$ whenever A is a subset of U and U is open in the space X; a g-open set is the complement of a g-closed set.
- 2. generalized pre regular-closed (gpr-closed) set if $pcl(A) \subseteq U$ whenever A is a subset of U and U is regular open in the space X.
- 3. an ω -closed set if $cl(A) \subseteq U$ whenever A is a subset of U and U is semi-open in the space X.
- 4. a g -closed set if $cl(A) \subseteq U$ whenever A is a subset of U and U is semi-open in the space X.
- 5. a $g^{\#}$ -closed set if $cl(A) \subseteq U$ whenever A is a subset of U and U is g-open in the space X.
- 6. an α generalized closed (αg -closed) set if $\alpha \operatorname{cl}(A) \subseteq U$ whenever A is a subset of U and U is open in the space X.
- 7. a generalized pre-closed (gp-closed) set if $\operatorname{pcl}(A) \subseteq U$ whenever A is a subset of U and U is open in the space X.
- 8. a regular generalized closed (rg-closed) set if $\operatorname{cl}(A) \subseteq U$ whenever A is a subset of U and U is regular open in the space X.
- 9. a generalized semi-pre-closed (gsp-closed) set if $\operatorname{spcl}(A) \subseteq U$ whenever A is a subset of U and U is open in the space X.
- 10. a strongly g-closed (g^* -closed) set if $\operatorname{cl}(A) \subseteq U$ whenever A is a subset of U and U is g-open in the space X.
- 11. a generalized star pre-closed (g^*p -closed) set if $pcl(A) \subseteq U$ whenever A is a subset of U and U is g-open in the space X.
- 12. a pre generalized star closed (pg^* -closed) set if $pcl(A) \subseteq U$ whenever A is a subset of U and U is $\omega \alpha$ -open in the space X.

3 On generalized star $\omega \alpha I$ -closed sets in ideal topological spaces

In this section we introduce the concept of $\omega \alpha I$ -closed set and study some of their properties.

Definition 3.1. A subset B of an ideal topological space (X, τ, I) is called a generalized star $\omega \alpha I$ -closed (briefly $g^* \omega \alpha I$ -closed)set if $B^* \subseteq D$ whenever B is a subset of D (i.e., $B \subseteq D$) and D is $\omega \alpha$ -open in the space.

Example 3.2. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v, w\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{v\}$ is a $g^*\omega\alpha$ -closed set but it is not a $g^*\omega\alpha I$ -closed set.

Example 3.3. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u, v\}, X\}$ and $\tau^c = \{\emptyset, \{w\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u, w\}$ is a $g^*\omega\alpha I$ -closed set but it is not a $g^*\omega\alpha$ -closed set.

Theorem 3.4. Every regular closed set in the ideal topological space (X, τ, I) is $g^*\omega \alpha I$ -closed.

Proof. Let B be a regular closed set in the ideal topological space (X, τ, I) . Let D be any $\omega \alpha$ -open set in X such that $B^* \subseteq D$. Since every open set is $\omega \alpha$ -open, so $B^* \subseteq \operatorname{cl}(B) \subseteq D$. Now, $B^* \subseteq \operatorname{cl}^*(B) \subseteq \operatorname{cl}(B) \subseteq D$. This shows that B is a $g^*\omega \alpha I$ -closed set. Hence every regular closed set in the ideal topological space is a $g^*\omega \alpha I$ -closed set. In general the converse of this theorem does not hold.

Example 3.5. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v, w\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u\}, X\}$. Therefore, $g^*\omega\alpha I$ -closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u, w\}$ is a $g^*\omega\alpha I$ -closed set but it is not a regular closed set.

Theorem 3.6. Every αg -closed, gp-closed, gsp-closed, gp-closed, gr-closed, g^*p -closed, and $pre\ g^*$ -closed set in the space is $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) .

Proof. It follows from that, every open set is $\omega \alpha$ -open set in the space (X, τ, I) . In general the converse of this theorem does not hold.

Example 3.7. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v\}, \{u, v\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u, w\}, \{w\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u\}$ is a $g^*\omega\alpha I$ -closed set but it is not an αg -closed, gp-closed, gp-closed, gp-closed, gp-closed, and pre g^* -closed set.

Theorem 3.8. The class of $g^*\omega\alpha I$ -closed set in the ideal topological space (X, τ, I) is independent of the class of α -closed, semi-closed, $\omega\alpha$ -closed, g-closed and g^* -closed sets in the space (X, τ, I) .

Proof. The proof is obvious from the definitions mentioned in the Preliminaries (section 2).

Example 3.9. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{w\}\}$. Take $\tau = \{\emptyset, \{w\}, \{u, w\}, X\}$ and $\tau^c = \{\emptyset, \{u, v\}, \{v\}, X\}$. Therefore, $g^* \omega \alpha I$ closed sets of X are $\{\emptyset, \{v\}, \{u, v\}, \{v, w\}, X\}$. Here $B = \{u\}$ is an α -closed, semi-closed, $\omega \alpha$ -closed set but it is not a $g^* \omega \alpha I$ -closed set.

Example 3.10. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v, w\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u, w\}$ is a $g^*\omega\alpha I$ -closed set but it is not an α -closed, semi-closed, $\omega\alpha$ -closed set.

Example 3.11. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v\}, \{u, v\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u, w\}, \{w\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u\}$ is a $g^*\omega\alpha I$ -closed set but it is not a g-closed and a g^* -closed set.

Theorem 3.12. The union of two $g^*\omega\alpha I$ -closed sets is a $g^*\omega\alpha I$ -closed set in any ideal topological space (X, τ, I) .

Proof. Let M and N be two $g^*\omega\alpha I$ -closed sets in an ideal topological space (X, τ, I) . Let D be an $\omega\alpha$ -open set in the space, such that $M \cup N \subseteq D$. Then $M \subseteq D$ and $N \subseteq D$. Since M and N are $g^*\omega\alpha I$ -closed sets, $M^* \subseteq D$ and $N^* \subseteq D$ whenever $M^* \cup N^* \subseteq (M \cup N)^* \subseteq D$, D is $\omega\alpha$ -open. Hence, $M \cup N$ is $g^*\omega\alpha I$ -closed set in the ideal topological space.

Theorem 3.13. If a subset B of a space X is $g^*\omega\alpha I$ -closed in the ideal topological space (X, τ, I) , then $B^* - B$ does not contain any non empty closed set in the space.

Proof. Let E be a closed set contained in B^*-B , such that $B^*-B\subseteq X-E$ and X-E is open, so that we have an $\omega\alpha$ -open set with $B\subseteq X-E$. But B is $g^*\omega\alpha I$ -closed in the ideal topological space. Therefore, $B^*\subseteq X-E$, consequently $E\subseteq X-B^*$. Then $E\subseteq B^*$. Thus $E\subseteq B^*\cap (X-B^*)=\emptyset$. That is, $E=\emptyset$. Hence the proof.

Theorem 3.14. If a subset B of a space X is $g^*\omega\alpha I$ -closed in the ideal topological space (X, τ, I) , then $B^* - B$ does not contain any non empty $\omega\alpha$ -closed set in the space.

Proof. The proof follows from Theorem 3.13 and the fact that every closed set is a $g^*\omega\alpha I$ -closed set in the space (X, τ, I) .

Example 3.15. Let $X = \{p, q, r, s\}, I = \{\emptyset, \{q\}\}$ and $\tau = \{\emptyset, \{r, s\}, X\}$. Then let (X, τ) be a topological space and I be an ideal. Consider the set $B = \{p, r\}$ then $B^* - B = X - \{p, r\} = \{q, s\}$. It does not contain any non empty $\omega \alpha$ -closed set. But B is not a $g^* \omega \alpha I$ -closed set in the ideal topological space (X, τ, I) .

Theorem 3.16. If B is $\omega \alpha$ -open and $g^*\omega \alpha I$ -closed set of the space (X, τ, I) , then B is closed set of the space (X, τ, I) .

Proof. Let B be an $\omega \alpha$ -open and a $g^* \omega \alpha I$ -closed set in the ideal topological space (X, τ, I) . Then $B^* \subseteq B$. Hence, B is closed.

Theorem 3.17. If B is a $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) , then B is closed iff $B^* - B$ is $\omega \alpha$ -closed in the space.

Proof. Let B be a closed subset of the ideal topological space (X, τ, I) . Then $B^* = B$ and so $B^* - B = \emptyset$, which is $\omega \alpha$ -closed. Conversely, suppose $B^* - B$ is $\omega \alpha$ -closed. Since, B is $g^* \omega \alpha I$ -closed in the ideal topological space (X, τ, I) , by Theorem 3.14 $B^* - B$ does not contain any non empty $\omega \alpha$ -closed set which implies that $B^* - B = \emptyset$. That is $B^* - B = \emptyset \Rightarrow B^* = B$. Hence, B is closed.

Theorem 3.18. If B is $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) and $B \subseteq C \subseteq B^*$ then C is also $g^*\omega \alpha I$ -closed set in the space.

Proof. Let D be an $\omega \alpha$ -open set in the space (X, τ, I) such that $C \subseteq D$ then $B \subseteq D$. Since, $B \subseteq D$ and D is $\omega \alpha$ -open set then $B^* \subseteq D$. Then $B^* \subseteq \operatorname{cl}^*(B) = B^*$. Since $C \subseteq B^*$, thus $C^* \subseteq B^* \subseteq D$. Hence C is $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) . In general the converse of this theorem does not hold.

Example 3.19. Let $X = \{u, v, w\}, I = \{\emptyset, \{w\}\}\}$ and $\tau = \{\emptyset, \{w\}, \{u, w\}, X\}$. Let (X, τ) be a topological space and I be an ideal. The $g^*\omega\alpha I$ -closed sets of X are $\{\emptyset, \{v\}, \{u, v\}, \{v, w\}, X\}$. Consider the set $B = \{v\}$ and $C = \{v, w\}$ such that B and C are $g^*\omega\alpha I$ -closed sets in the ideal topological space (X, τ, I) but $B \subseteq C$ is not contained in B^* .

Theorem 3.20. Let $B \subseteq Y \subseteq X$ and if B is $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) , then B is $g^*\omega \alpha I$ -closed relative to Y.

Proof. Let $B \subseteq Y \cap D$ where D is an $\omega \alpha$ -open set in the space (X, τ, I) . Then $B \subseteq D$ and hence $B^* \subseteq D$. This implies that $Y \cap B^* \subseteq Y \cap D$. Thus B is a $g^* \omega \alpha I$ -closed set in the space (X, τ, I) relative to Y.

Theorem 3.21. If a subset B of a topological space X is both semi-open and an ω -closed set then it is a $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) .

Proof. Let B be a semi-open and ω -closed set in the space (X, τ, I) . Let $B \subseteq D$ and D be an $\omega \alpha$ -open set in the space (X, τ, I) . Now $B \subseteq B$, by hypothesis, $B^* \subseteq B$ then $B^* \subseteq B \subseteq D$. Thus B is a $g^* \omega \alpha I$ -closed set in the ideal topological space (X, τ, I) . If B is both semi-open and $g^* \omega \alpha I$ -closed set in the space (X, τ, I) then, B need not be an ω -closed set as can be seen from the Example 3.22 below.

Example 3.22. Let $X = \{u, v, w\}$ and $I = \{\emptyset, \{v\}\}$. Take $\tau = \{\emptyset, \{u\}, \{v\}, \{u, v\}, X\}$ and $\tau^c = \{\emptyset, \{v, w\}, \{u, w\}, \{w\}, X\}$. Therefore, $g^*\omega\alpha I$ closed sets of X are $\{\emptyset, \{u\}, \{w\}, \{v, w\}, \{u, w\}, X\}$. Here $B = \{u\}$ is a semi-open and a $g^*\omega\alpha I$ - closed set but it is not an ω -closed set.

4 Generalized star $\omega \alpha I$ -open sets in ideal topological spaces

Definition 4.1. A subset B of a topological space (X, τ, I) is said to be a generalized star $\omega \alpha I$ -open (or, briefly, a $g^* \omega \alpha I$ -open) set if its complement is a $g^* \omega \alpha I$ -closed set in the space (X, τ, I) .

Theorem 4.2. A subset B of a topological space X is $g^*\omega\alpha I$ -open iff $D\subseteq \operatorname{int}^*(B)$ whenever D is $\omega\alpha$ -closed and $D\subseteq B$.

Proof. Assume that B is a $g^*\omega\alpha I$ -open set in the ideal topological space (X,τ,I) and D is an $\omega\alpha$ -closed set such that $D\subseteq B$. Then X-B is a $g^*\omega\alpha I$ -closed set in the ideal topological space (X,τ,I) . Moreover, $X-B\subseteq X-D$ and X-D is an $\omega\alpha$ -open set in the space X. This implies that $\operatorname{cl}^*(X-B)\subseteq X-D$. But $\operatorname{cl}^*(X-B)=X-\operatorname{int}^*(B)$. Thus $X-\operatorname{int}^*(B)\subseteq X-D$. So $D\subseteq\operatorname{int}^*(B)$. Conversely, suppose $D\subseteq\operatorname{int}^*(B)$ whenever D is an $\omega\alpha$ -closed set and $D\subseteq B$. To prove that B is $g^*\omega\alpha I$ -open in the ideal topological space (X,τ,I) . Let J be an $\omega\alpha$ -open set of the space X such that $X-B\subseteq J$, then $X-J\subseteq B$. Now X-J is a $g^*\omega\alpha I$ -closed set containing B, so that $X-J\subseteq\operatorname{int}^*(B), X-\operatorname{int}^*(B)\subseteq J$ but $\operatorname{cl}^*(X-B)=X-\operatorname{int}^*(B)$. Thus $\operatorname{cl}^*(X-B)\subseteq J$, that is X-B is a $g^*\omega\alpha I$ -closed set in the ideal topological space (X,τ,I) . Hence B is a $g^*\omega\alpha I$ -open set in the ideal topological space (X,τ,I) .

Theorem 4.3. If $\operatorname{int}^*(B) \subseteq C \subseteq B$ and B is $g^*\omega \alpha I$ -open set in the space, then C is $g^*\omega \alpha I$ -open set in the ideal topological space (X, τ, I) .

Proof. If $\operatorname{int}^*(B) \subseteq C \subseteq B$, then $X - B \subseteq X - C \subseteq X - \operatorname{int}^*(B) = \operatorname{cl}^*(X - B)$. Since, X - B is a $g^*\omega \alpha I$ -closed set, then by Theorem 3.18, X - C is also a $g^*\omega \alpha I$ -closed set in the ideal topological space (X, τ, I) . Therefore, C is a $g^*\omega \alpha I$ -open set in the ideal topological space (X, τ, I) .

Theorem 4.4. If B is a $g^*\omega \alpha I$ -closed set in the space, then $B^* - B$ is a $g^*\omega \alpha I$ -open set in the ideal topological space (X, τ, I) .

Proof. Let B be a $g^*\omega\alpha I$ -closed set in the ideal topological space (X, τ, I) . Let E be an $\omega\alpha$ -open set such that $E\subseteq B$. Since B is $g^*\omega\alpha I$ -closed, then by Theorem 3.13, B^*-B does not contain any non empty closed set in the space. Thus $E=\emptyset$. Then $E\subseteq \operatorname{int}^*(B^*-B)$. Therefore by Theorem 3.4, B^*-B is a $g^*\omega\alpha I$ -open set in the ideal topological space (X,τ,I) .

Theorem 4.5. A subset B is $g^*\omega\alpha I$ -open set in the ideal topological space (X, τ, I) iff J = X every time J is $\omega\alpha$ -open and $\operatorname{int}^*(B) \cup (X - J) \subseteq J$.

Proof. Let B be a $g^*\omega\alpha I$ -open set in the ideal topological space (X,τ,I) . Let D be an $\omega\alpha$ -open set and $\operatorname{int}^*(B) \cup (X-D) \subseteq D$. This gives $X-D \subseteq (X-\operatorname{int}^*(B)) \cap (X-(X-B)) = X-\operatorname{int}^*(B) - (X-B) = \operatorname{cl}^*(X-B) - (X-B)$. Since X-B is $g^*\omega\alpha I$ -closed and X-D is $\omega\alpha$ -closed in the space (X,τ,I) , then by Theorem 3.13 it follows that $X-D=\emptyset$. Therefore, X=D. Conversely, suppose E is $\omega\alpha$ -closed and $E\subseteq B$. Then $\operatorname{int}^*(B) \cup (X-B)\subseteq \operatorname{int}^*(B) \cup (X-E)$. It follows that $\operatorname{int}^*(B) \cup (X-E)=X$ and hence, $E\subseteq \operatorname{int}^*(B)$. Therefore, E is E in E in

Acknowledgments The authors express their heart felt gratitude to the referees and the Editor-in-Chief of this journal for their valuable critical comments which have upgraded the content of this paper.

References

- [1] Carpintero, C., Rosas, E., Salas, M., Sanabria, J. and Vasquez, L. (2013) Generalization of ω -closed sets via operators and ideals, *Sarajevo Journal of Mathematics*, 9(22), 293–301.
- [2] Dontchev, J. (1996). On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2.
- [3] Ekici, Erdal (2012). On pre *I*-open sets, semi-*I*-open sets and *b-I*-open sets in ideal topological spaces, *Acta Universitatis Apulensis*, 30, 293–303.
- [4] Hatir, E. and Noiri, T. (2002). On decomposition of continuity via idealization, *Acta Math. Hun-gar.*, 96(4), 341–349.
- [5] Jafari, S., Benchalli, S.S., Patil, P.G. and Rayanagoudar, T.D. (2012). Pre g*-closed sets in topological spaces, Journal of Advanced Studies in Topology, 3(3), 55–59.
- [6] Jankovic, D. and Hamlett, T.R. (1990). New topologies from old via ideals, Amer. Math. Monthly, 97(4), 295–310.
- [7] Kuratowski, K. (1996). Topology, Vol.I, Academic Press, New York.
- [8] Maragathavalli, S. and Vinodhini, D. (2014). On α generalized closed sets in ideal topological spaces, *IOSR Journal of Mathematics*, 10(2), 33–38.
- [9] Navaneethakrishnan, M. and Joseph, J. Paulraj (2008). G-closed sets in ideal topological spaces, Acta Mathematica Hungarica, 119(4), 365–371.
- [10] Ravi, O., Kamaraj, M. and Vijeyrani, V.Ba. (2016). $g^{\#}$ -closed sets in ideal topological spaces, International Journal of Mathematics and its Applications, 4(2), 73–83.
- [11] Ravi, O., Tharmar, S., Rodrigo, J. Antony Rex and Sangeetha, M. (2011). Between *-closed sets and I*g closed sets in ideal topological spaces, International Journal of Advances In Pure and Applied Mathematics, 1(2), 38–51.
- [12] Sundaram, P. and John, M. Shrik (2000). On ω -closed sets in topology, *Acta Ciencia Indica*, 26(4), 389–392.
- [13] Vaidyanathaswamy, R. (1945). The localization theory in set Topology, *Proc. Indian Acad. Sci. Math. Sci.*, 20, 51–61.
- [14] Veerakumar, M.K.R.S. (2003). g^- -closed sets in topological spaces, Allahabad Math. Soc., 18, 99–112.
- [15] Veerakumar, M.K.R.S. (2003). g#-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 24, 1–13.

