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Abstract A secure dominating set of a graph G = (V, E) is a dominating set S C V/,
if for each u € V' — S, there exists a v such that v € N (u)()S and (S — {v})J{u} is
dominating. The minimum cardinality of a secure dominating set is the secure domination
number, s (G). In this paper, we find vs (G) for degree splitting graphs of few classes of
graphs like paths, complete binary trees, complete graphs and complete bipartite graphs.
Further, bounds for v, (G) of degree splitting graphs of regular graphs and few classes of
caterpillars are determined.
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1 Introduction

The graphs considered in this paper are finite, simple and undirected with vertex set V(G) and edge
set E(G). We study the problem of using guards to defend the vertices of G against an attack. At each
vertex of a graph, at most one guard is stationed. A guard at a vertex v can deal with the problem at
any other vertex in its closed neighborhood. A guard can be considered as a unit of force (or server unit)
capable of moving along an edge of a graph, whose purpose is to defend (or protect or secure) a vertex
or set of vertices. In the process, a guard can protect the vertex at which it is located and can move
to a neighboring vertex to defend an attack there. This paper deals with the “secure” version of the
problem in which the configuration of guards induces a dominating set before and after an attack has
been defended. The minimum number of guards required when at most one guard is allowed to move
in order to defend an attack, so that the configuration of the guards induces a dominating set before
and after an attack, is called the secure domination number and it is denoted by s (G). The notion of
secure domination was introduced by E.J. Cockayne et al. [6]. In [6] four strategies for the protection
of a graph, by placing guards at vertices were discussed. Several papers on secure domination have
appeared, for example, [1,2,3,4,5,6,8,9,10]. We now give a formal definition of a secure dominating
set.
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A set S is a secure dominating set (or SDS) if for each u € V — S, there exists a v such that
veEN(u)NS and (S—{v})U{u} is dominating. (1.1)

We say that u is S-defended by v (or v S-defends u) if (1.1) is satisfied. The parameter s (G) is the
minimum cardinality of an SDS of G and the corresponding set is called a 7, (G)-set or vs-set of G.
In this paper, we find s (G) of degree splitting graphs of paths, complete binary trees, complete graphs
and complete bipartite graphs. Further, bounds for . (G) of degree splitting graphs of regular graphs
and few classes of caterpillars are determined.

Secure domination in degree splitting graphs finds its applications in computer communication net-
works, radio stations etc.

2 Definitions and Preliminaries

For graph theoretic notations and terminology in general, we follow [7].

For a vertex v € V, the open neighborhood of v is the set N(v) = {u € V : wv € E} and its
closed neighborhood is the set N [v] = N(v) U {v}. For a set S C V, its open neighborhood is the set
N (S) = U,es N(v) and its closed neighborhood is the set N[S] = N(S)U S.

The private neighborhood pn(v, S) of v € S is defined by pn(v, S) = N(v)—N(S—{v}). Equivalently,
pn(v, S)={u € V: Nu)n S ={v}}. Each vertex in pn(v, S) is called a private neighbor of wv.
The external private neighborhood epn(v, S) of v with respect to S consists of those private neighbors
of v in V — S, while the internal private neighborhood ipn(v, S) of v with respect to S consists of those
private neighbors of v in S. Thus epn(v, S) = pn(v, S)N(V —S) and ipn(v, S) = pn(v, S) N S,
while pn(v, S) = epn(v, S) U ipn(v, S).

A set S CV is a dominating set if every vertex in V — S is adjacent to at least one vertex in S. The
domination number -~ (@) is the minimum cardinality among all dominating sets of G.

A secure dominating set (SDS) of G is aset S C V if for each u € V — S, there exists a v such that
v € N(u)NnS and (S — {v})U{u} is dominating. The minimum cardinality of a secure dominating set
is the secure domination number and is denoted by 7, (G).

The degree of a vertex v in graph G is defined to be the number of edges incident to v and is denoted
by deg v. The mazimum degree of a graph G, denoted by A(G), is defined to be

A(G) = maz{degv : v € V (G)}. A leaf is a vertex whose degree is one.

A support is a vertex which is adjacent to at least one leaf. A weak support is a vertex which is adjacent
to exactly one leaf. A strong support is a vertex which is adjacent to at least two leaf vertices.

Let G = (V, E) be a graph with V. = S;U Sy U---US; U T where each S; is a set of vertices
having at least two vertices and having the same degree and T'=V — U S;.

The degree splitting graph [10] of G is denoted by DS(G) and it is obtained from G by adding vertices

w1, Wa, ..., w: and joining w; to each vertex of S; (1 < i <t) see Fig. 1).
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Fig. 1: A graph G and its degree splitting graph DS(G).

A caterpillar is a tree whose removal of leaf vertices leaves a path called the spine of the caterpillar.
A complete binary tree is a rooted tree in which all leaves have the same depth and all internal vertices
have degree three except the root, which is of degree two. If T is a complete binary tree with root
vertex v, the set of all vertices with depth [ are called vertices at level [.
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A graph G is complete if every pair of distinct vertices of G are adjacent in GG. A complete graph on n
vertices is denoted by K.

A graph G = (V, E) with bipartitions V = (V1, V2) is said to be a complete bipartite graph if every
vertex in Vi is adjacent to every vertex of Va. It is denoted by Ky, n.

Forve SCV,weV —5isan S— external private neighbor of v ( abbreviated S — epn of v) if
N (w) NS = {v}. Let P(v, S) be the set of all S— epn of v.

Proposition 2.1. [6] Let S be a dominating set. Vertex v € S defends u € V — S if and only if
G[P(v, S) U{u, v}] is complete.

Proposition 2.2. [6] S is an SDS if and only if for each u € S, there exists v € S such that
G[P(v, S) U{u, v}] is complete.

Proposition 2.3. [6] For a complete graph K,, v(G)=":(G)=1.
3 Degree splitting graphs of certain trees

In this section secure domination number of degree splitting graphs of some classes of trees like paths
and complete binary trees are determined.
We observe that for a path Py, v, (DS (P,)) =1, if n =2 and s (DS (Pn)) =2, if n = 3.

Theorem 3.1. For a path P,, n > 4, v, (DS (P,)) = |22] + 1.

Proof. Let G = DS(P,) and S be an SDS of G. Consider V(P,) = {v1, v2...v,} and V(G) =
V(P,) U{w1i, w2}, where deg w1 = n — 2 and deg wa = 2. Suppose on contradiction there exists an
SDS, S with |S| < [2£2] + 1. Let [S| = |22]. We have the following cases:

Case (i) S C V(P,)

In this case, without loss of generality there exists av;, 1 < 4 < nsuch that the set (S — {vi}) U {vit1}
is not a dominating set, which is a contradiction to the definition of S.

Therefore S| > | 22| + 1.

Case (ii) S C V(Pn) U {wi}

The vertices L"T“J — 1 of S lie on the path P,.

In this case, S is not a secure dominating set, which is a contradiction. Therefore |S| > VLTHJ + 1.
Case (iii) S C V(P,) U {w2}

The same argument holds as in the Case (ii). Therefore we have, [S| > | 22| + 1.

Case (iv) S C V(P,) U {wi,ws}

In this case, VTHJ — 2 vertices belong to S.

Without loss of generality, there exists a v; in V' — S such that (S — {w1}) U {v;} is not a dominating
set, which is a contradiction. Therefore, |S| > [ 22| +1.

Hence in all the above cases we obtain, |S| > | 242 | + 1. Therefore vs (DS (Pn)) = |*#*| +1 and a
~s(G)-set is given by {w1, w2, v2,vs5,vs...vn—2} ( see Fig. 2).

DS(Ps5)

Fig. 2: Shaded vertices denote v5(DS(P5)) set.
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Theorem 3.2. For a complete binary tree T of level I, vs(DS(T)) = > 2l=k 4 9,
1<i<l
k=3t—2
k<l
Proof. Let G = DS(T) and V(G) = {v; : 1<i<2"' 42724273 u{w; :1<i<2'b u{u}lu
{w1, wa}, where deg v; = 3 for each i, 1 < i < 2316 and deg u; = 1 for each i, 1 < i < 2! and
deg u = 2.
Let S be an SDS of G.
To prove that |S| > > 2=k 49,
1<i<
k=3i—2
k<l
Suppose on the contrary that |S| < > 217F 1 2. Let |S| = > 2Lk 1.
1<i<l 1 <<l
k=3i—2 k=3i—2
k<l k<l

Since each u; is adjacent to wi, where deg wy = 2!, place a guard at wi. Also place guards at each of
the 2/~ ! vertices at level I — 1. Continuing in this way by placing guards at 2'=* vertices of I — 4 level
and soon up to | — k level, k <l and k =3i —2, 1 <i <[, we see that S is a dominating set. But we
can see that there exists a vertex v; such that (S —{v;})U{v;}, where v; ¢ S and 7 # j, v; € S is not
a dominating set. Hence, this is a contradiction to the definition of S being an SDS of G satisfying the
hypothesis of Proposition 2.1 and Proposition 2.2.

Therefore,
1S| > > 2t
1<i<l
k=3i—2
k<l
Hence,

S:{vifl:1<n<2171}U{vif‘l:1<n<2l74}u...u{vﬁfk:1<n<2lik}u{w1,w2}

where v, *’s are (I — k) level vertices and k < I, k = 3i — 2,1 < i < [, which yields, |S| =
> 217k 12 whence it follows that, vs (G) = vs (DS (T)) = > 2l=k 42,
1<i<l 1<i<l
k=3t—2 k=3i—2
k<l k<l

4  Degree splitting graphs of complete graphs

In this section, we find the secure domination number of degree splitting graphs of complete graphs
like K,, and K, 4 where, p < gq.

Theorem 4.1. For a complete graph K., vs (DS (K,)) = 1.

~

Proof. K, is an (n — 1) regular graph. By Proposition 2.3, vs (K,) = 1 and since DS(K ) = K1,
50, vs (DS (Ky)) =1, as K, 41 is a complete graph on n + 1 vertices.
O

Theorem 4.2. For a complete bipartite graph Kp 4, p < q,

3, ifp=qg=3,
2, ifp=q=2,

vs (DS (Kp,q)) = 2, ifp=1g>1,
3, if p=2,9>2,
4, if p=> 3.
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Proof. Let P = {u1,uy...up} and Q = {v1,v,...v4} be the defining partite sets of Kp 4.
Let G = DS(K,,4) and S be an SDS of G. We consider the following cases:
Case (i) p=¢q>3
Let V (G) = PUQ U {w}. To prove that |S| > 3.
Suppose on the contrary that |S| < 3. Assume that |S| = 2. The following sub cases arise:
Sub case (a) SCP
In this case, both the vertices of S belong to P. Clearly, S is not a dominating set. Hence a contradic-
tion. Therefore |S| > 3.
Sub case (b) S CQ
Since both the vertices of S belong to @, clearly, as in Case (i), S is not a dominating set, which is a
contradiction. Hence |S| > 3.
Sub case (¢) SCPUQ
Since S C PUQ, let S = {u;,v;} for some ¢ and j. Clearly, for u; € S, (S — {u;}) U {vr}, vk € V=15,
k # j is not a dominating set, which is a contradiction. Hence |S| > 3.
Sub case (d) S C PU{w}
In this case, S = {u;, w} for some i. Clearly, (S —{w}) U {u;}, ¢ # j is not a dominating set, which
is a contradiction. Hence |S| > 3.
Sub case (e) S C QU {w}
In this case, S = {v;,w} for some i. Clearly, (S —{w}) U {v;}, j # ¢ is not a dominating set, which
is a contradiction. Hence |S| > 3.
All the above sub cases imply that |S| > 3.
Therefore vs (G) =3 and a v, (G)-set is {u;, v;, w} for any ¢ and j.
Case (ii) p=q¢=2
Let G = DS(K232) and V (G) = PUQU{w}. A similar argument as in Case (i) proves that v, (G) =2
and a v, (G)-set is {w,u1}.
Case (iii) p=1, ¢>1
Let G = DS(K1,4) and V (G) = {u1} U{v1,v2,...,v4} U{w}. The deployment of a guard at a single
vertex of G does not dominate the graph G. Therefore |S| > 2. Clearly, the set {w, u1} is the unique
s (G)-set of cardinality 2. Therefore v (G) = 2.
Case (iv) p=2, ¢>2
Let G = DS(Ka2,4) and V (G) = PU Q U {wi, w2}, where deg wi = p, deg w2 = ¢g. To prove that
|S| > 3. Suppose on contrary that |S| < 3. By similar argument, as in Case (i), we obtain v, (G) =3
and a vs (G)-set is {u1, u2, v1}.
Case (V) p>3, p<gq
Let G=DS(Kp,q),p>3, p<qgand V(G)=PUQU{wi,wsz}, where deg w1 = p, deg wa = gq.
To prove |S| > 4. Assume the contrary that |S| < 4. Analogous to the proof of Case (i), we obtain
|S| > 4. Therefore 75 (G) =4 and a s (G)-set is {u1, u2, vi,wa}.
O

5 Bounds

In this section we attempt to determine an upper bound for the degree splitting graphs of certain
classes of caterpillars and regular graphs.

Theorem 5.1. For a caterpillar T without strong support, vs (DS (T)) <~ (T) + 1.

Proof. Let S be an v (T)-set and let L = {i1,12,...,lr} denote the set of leaf vertices of T'. Consider

S = {s/h 8/27 cey Sp_o, s;c_l, s;c} to denote the set of support vertices of degree 3 in T' except the

vertices 3/1 and s; which are of degree 2 in 7. Let vV = {v;, v;, . ,'ul/, sll, s;} denote the set of vertices
of degree 2 in T'.
Let G = DS (T) and V (G) = { V(T)U{wi,we}  if A(T) =2,

V(T) U {wr,wa,ws} if A(T)=3 where, N (w1) = L, N (ws) =

S

V' and N (ws) = S — {sll,s;g} .
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Without loss of generality, any v;, 1< ¢ < I defends wa, since the set (S - {v;}) U {w2} is a secure

dominating set of G, as N (w2) = V'. Consider the following cases:
Case (i) A(T) =2
In this case, T~ P,, and we have the following sub cases:
Sub case (a)
There exists a leaf 11 or l; € S such that, without loss of generality, the set (S —{li}) U {wi1}isa
dominating set of G. Therefore vs(G) < v4(T).
Sub case (b)
There exists a v, € V (G) = S orl;, i =1 or 2 which are not defended. Hence v, (G) < v, (T) + 1.
Case (ii) A(T) =3
In this case, the set (S — {sl}) U {ws}, for some i, 1 <7 < k — 2 is a dominating set. If wy € S, or
otherwise S may or may not be a dominating set. It is a contradiction if S is not dominating set for
G. Hence v, (G) < v, (T) + 1.

O

Remark 5.2. Bound is sharp for caterpillars like Py, P; etc.

Theorem 5.3. For a regular graph G, ~,(DS(G)) < vs(G) and the bound is sharp for complete
graphs K,.

Proof. Let V(DS(G)) = V(G)U{u} and let S be an ~, (G)-set. Since G is regular, N(u) = V(G). For
any v € S, (S —{v}) U {u} is a dominating set of DS(G). Hence S is an SDS of DS(G). Therefore,
Vs (DS(G)) < s (G).

O

References

[1] Benecke, S. (2004). Higher Order Domination of Graphs, Master’s Thesis, University of Stellen-
bosch, South Africa.

[2] Benecke, S., Cockayne, E.J. and Mynhardt, C.M. (2007). Secure total domination in graphs, Util.
Math., 74, 247-259.

[3] Cockayne, E.J. (2007). Irredundance, secure domination and maximum degree in trees, Discrete
Math., 307, 12-17.

[4] Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M. and Hedetniemi, S.T. (2004). Roman domination
in graphs, Discrete Math., 278, 11-12.

[6] Cockayne, E.J., Favaron, O. and Mynhardt, C.M. (2003). Secure domination, weak Roman domi-
nation and forbidden subgraphs, Bull. Inst. Combin. Appl., 39, 87-100.

[6] Cockayne, E.J., Grobler, P.J.P., Grundlingh, W.R., Munganga, J. and van Vuuren, J.H. (2005).
Protection of a graph, Util. Math., 67, 19-32.

[7] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998). Fundamentals of Dominatin in Graphs,
Marcel Dekker Inc., New York.

[8] Mynhardt, C.M., Swart, H.C. and Ungerer, E. (2005). Excellent trees and secure domination, Util.
Math., 67:255-267.

[9] Merouane, H.B. and Chellali, M. (2015). On secure domination in graphs, Inform. Process. Lett.,
115(10), 786-790.

[10] Ponaraj, P. and Somasundaram, S. (2004). On the degree splitting graph of a graph, Nat. Acad.

Sci. Letters, 27(7,8), 275-278.



