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Abstract

We establish some integral representations for the Srivastava’s triple hypergeometric function H , of

matrix arguments which generalize some of the recent results of Choi, Hasanov and Turaev [12] for this
function. We prove our results by employing the Mathai’s matrix transform technique for real symmetric
positive definite matrices as arguments. Towards the end of the paper we also give the corresponding
results when the argument matrices are complex Hermitian positive definite.

Keywords: hypergeometric functions, Srivastava’s triple hypergeometric functions, Exton’s triple
hypergeometric function, matrix argument, matrix transform, real positive definite, Hermitian positive
definite.

2010 AMS Mathematics Subject Classification: Primary: 33C05, 33C10, 33C15, 33C20, 33C99
Secondary: 60E, 62H, 44A05.

1. INTRODUCTION
Among the multiple hypergeometric functions, the triple hypergeometric functions H,,H, and H_

introduced by Srivastava [9,10] deserve an important place. Much work has been done on these functions ever
since then. Without going into any more details of this (because the interested reader can easily find the vast
literature existing in this field), we only mention here that the first author had first of all defined these three
functions for the case of matrix arguments with real symmetric positive definite matrices as the arguments in
2001 [1] (see also [2]). A number of integral representations for these functions are available in the literature,
some of the very earlier ones can be found in [9,10], besides [11, chapters fourth, fifth and sixth] and many
others. Choi, Hasanov and Turaev [12] have also given a number of integral representations for the Srivastava

function H  , which will be the focus of our study here. Our object here is to give the generalizations of some

of these integral representations for the function M, when the arguments of this function are real symmetric
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positive definite matrices. We prove our results by appealing to the Mathai’s matrix transform technique[13].
We also give the corresponding parallel results when the argument matrices are complex Hermitian positive
definite in the concluding section of the paper.

The organization of the paper is as follows: the first section contains the necessary background material; in the
second section we reproduce the first author’s definition [1] of the Srivastava function H p for the real

symmetric positive definite matrix arguments which we utilize to prove our results in the third section of the
paper. Finally, in the fourth section of the paper we state the corresponding parallel results for the Srivastava

function H , of complex matrix arguments (see also [8]) which can be proved in a similar manner as the results

in the third section by utilizing the corresponding tools available in the literature pertinent references to which
are also pointed out there.

We mention that all the matrices appearing in the first, second and the third sections of this paper are real
symmetric positive matrices of order ( pX p) while those appearing in the fourth section of this paper are
Hermitian positive definite of order( pX p). A >0 denotes that the matrix A is positive definite, A%
represents the symmetric square root of the matrix A and A' denotes the transpose of the matrix A. Re(.)
denotes the real part of (.), while |A| denotes the determinant of the matrix A. 0 < X </ means that

X >0 and I — X >0, ie. all the eigenvalues of X lie between O and 1 (see, Mathai [4, p.3]). The matrix
transform (M- transform) of a function f (X ) of a ( pX p) real symmetric positive definite matrix X was
defined by Mathai [13] as follows:

p-(p+1)/2
Mf(p):J.X>O|X| F(X)dX (1.1)
for X >0 and Re(p)>(p—1)/2, whenever M ,(s) exists.

The following results and definition will be used by us at various places in this paper.

Theorem 1.1: Mathai [3, (2.24), p.23] - Let X and Y be (px p) symmetric matrices of functionally
independent real variables and A a ( pX p) non singular matrix of constants. Then,
Y = AXA'= dY =|A]"" ax (12)

and

Y =aX = dY =a"""""?dX (1.3)

where a is a scalar quantity.

Theorem 1.2: Gamma integral (Mathai [4, (2.1.3), p.33 and (2.1.2), p. 32]) -

[ X[ e ™0ax =[BT (@) (1.4)
X>0 P
for Re(a)>(p—1)/2, where,

L (a)=7""""T(e)(a—3%)--T(a—4) (1.5)

for Re(a) > (p—1)/2 and tr(X) denotes the trace of the matrix X .
Theorem 1.3: Type-1 Beta Integral (Mathai [4, (2.2.2), p.34])-
Bl’(a’ﬁ) - IO<X<I|X|

for Re(ar) > (p—1)/2,Re(B) > (p—1)/2.

- o I' ()T
(p 1>/2|I_X|ﬂ P2 e :M (1.6)

T, (a+p)

Definition 1.4: We reproduce below the definition of the Exton’s X, function of matrix argument from an

earlier paper of the first author (see (2.1), p.209, [8]) which we utilize in proving a result in the third section of
this paper.
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a,,a,;a,,a,,a,,d,|

The Exton's function X, =X,
Cl; C2; C3

-X,-Y,—Z } of matrix arguments is defined as that

class of functions which has the following matrix transform (M-transform):

M (X4) _ J'X>0 J'Y>O J'Z>O|X|Pl—(p+1)/2 |Y pr—(pth)/2 |Z p—(p+D)/2 x

a,,a;;a,,a,;a,,a,|
4{1 15,4y, 4, 2|_X’_Y’_Z}dXdeZ

(N A N

_ Fp(al _2:01 P> _p3)rp(a2 P> _p3)rp(Cl)rp(cz)rp(c3)rp(pl)Fp(pZ)rp(p3)
Fp(al)rp(aZ)rp(cl_pl)rp(CZ_pZ)rp(c3_p3)
for Re(al_2,01_,02_,03,612_,02_,03,6',-_p,-,p,-)>(P_1)/2,i:1,2,3-

(1.7)

Theorem 1.5: (Mathai [4, (6.13), p. 84] )- For p = 2,
[l
g T\ 2 2 4 7) T,(a-2p)

TR

Theorem 1.6: (Mathai [4, (2.3.6), p.38]) - For a ( pX p) real symmetric positive definite matrix X such that
0<X<I,

F(a.By:-X)=

(1.8)

L, (7)
L, ()T, (y

for Re(O! Y- ) > ( p —1)/ 2. For the corresponding result of scalar arguments for this well known

jo’|s|"“”“)’2 =S "2 1 xs[ P ds  a9)

integral see Slater [5].

2. THE SRIVASTAVA FUNCTION H, OF MATRIX ARGUMENTS

Now we reproduce the definition of the Srivastava function H , of matrix arguments due to the first author [1]
(see also [2]).

Definition 2.1: The Srivastava function H , of matrix arguments
H,=H,(a,a,,a;;c,,¢,,c5;—X,-Y,~Z)

is defined as that class of functions which has the following matrix-transform (M-transform):

M (HB) - J.X>()J.Y>() J.Z>()|)(|pl_(p+l)/2 |Y

Fp(al_pl ,03) ( )Fp
r,(a)C ( ) »(a)
L, ()T, ()L, (e))T, (A)T, (2,)T, (£,)
Fp(cl_pl) p( 2_:02) p(3_p3)
for Re(a,— p, = Py, a0, = P, — PGy — Py — PssC; = P;s ;) > (p—1) /2, where, i =1,2,3.

IR 2P PP (a4, a556,,¢,, 045~ X - ,~Z ) dXdYdZ

(@=p=py)

@2.1)
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3. INTEGRAL REPRESENTATIONS FOR THE SRIVASTAVA’S FUNCTION H, OF MATRIX
ARGUMENTS

We now establish some integral representations for the Srivastava’s function H ; of matrix when the argument

matrices are real symmetric positive definite. We give the proofs of only the representative results, other results
can be proved on similar lines.

Theorem 3.1:

s—a;—( p+1)/2

r a-
HB(al,az,a3;cl,c2,c3;—X,—Y,—Z)= p(S) J.()I|T l (p+1)/2|1_T

l—‘p (al)rp(s_al)
H,(s.a,.a5:¢,,0,,05-T"XT"? =Y ,-T"°ZT"*)dT ~ (.1)

for Re(s—a,,a,)>(p-1)/2.
Proof: Taking the matrix transform (M-transform) of the right side of (3.1) with respect to the variables
X,Y,Z and the parameters p,, p,, O, respectively, we get

J.X>() J.Y>() J.Z>()| X |pl_(p+1)/2 |Y

H,(s.a,,a5:¢,,¢,,c;-T"*XT"?,~Y ,—T"°ZT"" ) dXdYdZ (3.2)

pielpiie

pr=(p+1)/2 | 7

Applying the transformations X, 2711/2)(711/2,Y1 =Y,Z, =T"ZT" to the above expression with

dx, =|r|""" ax,ay, = av,dz, =|1|

we get
A O N A5 4 e ¢
Hy(s.a,,a55¢,,¢,,055—X,,—Y,,—Z,)dX dY,dZ,
which, on writing the M-transform of the H p function with the help of (2.1), yields
o Lols=p=pIL, (@ =p = )T, (== p)T ()T, ()T ()
L,(s)T, ()T, (a,)T,(¢,=p)T,(c;=p,)T, (c;=p;)
L, (p)T,(p.)T, () (3.3)

Substituting this expression on the right side of (3.1) gives
F17(5_:01 _pS)Fp (a,-p, _IOZ)Fp(a3 — P, _103)Fp (cl)rp(CZ)Fp(CS)
I_‘p(al)r‘p (S_al)rp (QZ)Fp(QS)Fp(Cl _pl)rp (CZ _pz)rp (CS _pS)
I ja—p—ps—(p+1)/2
Fp(pl)rp(pZ)Fp(p3)J.o|T e |I_T
in which the variable T  can be integrated out with the help of (1.6) to give M (H B ) as given by (2.1).

p+l p+l

az @rom (1.2) and |X,|=|T||X|.]¥;|=|¥].|Z,|=|T||Z]

,—(p+1)/2 —(p+1)2
pr=(p+1) |Zlﬂ3(p ) <

X

s—a;—( p+1)/2 dT

|
The above theorem generalizes the integral given in (2.1) p.139 of Choi et al. [12] for the case of H , with real

symmetric positive definite matrix arguments. Similarly the following theorems give the generalizations of the
results in (2.2), (2.3) and (2.4) on p.139 and (2.5) and (2.6) on p. 140 of Choi et al. [12] respectively.

Theorem 3.2:
r (S ) Iy ja—(p+)/2 s—ay—(p+1)/12
Hy(a,a,,a55¢,,¢5,¢5—-X,-Y,~Z) = - J. Ir -1
Fp (az)rp (S_az) 0
H, (al, s,a3;c1,c2,c3;—TI’ZXTUZ,—T”ZYTVZ,—Z)dT (3.4)
162 Bulletin of Pure and Applied Sciences
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for Re(s—a,,a,)>(p-1)/2.

Theorem 3.3:

s—as—( p+1)/2

I (S) 1 —(p+1)i2
9 9 ; 9 9 ;_ ’_Y’_ = L T‘H/j ’ I_T
H,(a,a, a5;¢,,¢,,¢5—X z) Fp(as)rp(s_%)".()' | |

H,(a.a,.s:¢,¢,,c;—X,~-T"YT",-T"ZT"*)dT  (3.5)
for Re(s—ay,a,)>(p—1)/2.

Theorem 3.4:
HB(al’a2’a3;C1’C2’C3;_X’_Y’_Z):F X —(p+1)/2 —(p+1)/2
1’
HB(al,az,a3,s,cz,c3,—T”2XT”2,—Y,—Z)dT (3.6)
for Re(c,—s,5)>(p-1)/2.
Theorem 3.5:
HB(al,az,a3;cl,c2,c3;—X,—Y,—Z): J'| ~(p+1)/2 s—(p+1)/2
Fp(s 0
HB(al,az,a3,cl,s,c3,—X,—T”2YT”2,—Z)dT (3.7)
for Re(c, —s,5)>(p—1)/2.
Theorem 3.6:
. YV 7\ — —(pH)2 s—(p+1)/2
Hy(a,,a,,a5¢,,¢,,¢5—X,~Y,~Z) F,,( .
HB(al,az,a3,cl,c2, ,—X,—Y,—TVZZT”Z)dT (3.8)

for Re(c,—s,5)>(p—1)/2.

Now we prove the following generalization of (2.7) p.140 of Choi et al. [12]:
Theorem 3.7:

T (a+a,) -
HB(al’az’as;cl’cz’c3;_x’_Y’_Z):WI() |T e ~p¥) 2><
a,+a,,a +a,;a,+a,,a;a,+a,,a,
) a: & ¢
'—(I—T)”2 T“2XT”2(1—T)Uz,—(I—T)UZY(I—T)UZ,—TVZZT”Z}ZT (3.9)

for Re(a,,a,)>(p-1)/2.
Proof: On taking the M-transform of the right side of (3.9) with respect to the variables X,Y,Z and the

parameters p,, 0,, 0, respectively, we obtain

J.X>0 J.Y>0 J.Z>0| X|P1—(p+1)/2 |Y|Pz—(p+1)/2 |Z

| 1/2 172 172

—(1-T)"T"XT"*(1-T)" ,—(1-T) Y(I—T)”’",—T”"’ZT“Z}dXdeZ (3.10)

ps=(p+1)/2 a t+a,,a,+a,,a,+a,,a;;a, +a,,a,
xX,

C1 5 C2 ; C3

Using the transformations
12 12 12 12

X, =(1-T)"1T"”XT"(1-T)",Y,=(I-T)"Y(I-T) ,Z, =T"ZT"

163 Bulletin of Pure and Applied Sciences
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with
p+l

dx, =|1-1("" 1" ax v, =|1 -1\ ay .z, =|r|""" dz

and
| X, =[1=T([T][x].[v| = |1 =T][¥] |z, | =|]|2]

in (3.10) and then writing the M-transform of the Exton’s triple hypergeometric function X, by using (1.7)

yields
|T|—/J1—/J3 I— T|_P1—P2 Fp (al +a,— 2:01 P p3)rp (613 =P P5)
I (a+a)l",(a)I" ,(c,—p)T (¢, = p,)T ,(¢c;— p3)
T, ()T, (¢,)T,(e)T, (p)T, ()T, () @10
Now substituting this expression on the right side of (3.10) and integrating out 7 in the consequent expression
by utilizing (1.6) produces M (H B) in conformity with (2.1). [ |

We proceed now to give below a result that holds good only for the case of (2)(2) real

symmetric positive definite matrices.

Theorem 3.8: Let 0 < (M —A)(A—N)_1 <[ and
Fp (al +a2+a3 —a-a, J-IJ-I|T
Fp(al)rp (GZ)Fp 040
) {al +a,+a,+1 a,+a,+a, 1

a;—(p+1)/2
+—.¢,,C,,C5;
C s sL1sboolay
2 2 4

_ a+a, A _ N a—(p+1)/2 |S aj+a,—(p+1)/2 |I -T a,~(p+1)/2 %

)
@M

1-5 I+(M—-A)(A-N)"S

-1

~4{r+(M-A)(A-N)"S} (M-N)(A-N)"(1-T)

172

T SXST" (I-T)"” (A-N)"x

-1

(M= N){1+(M ~A)(A-NY"S} ~4{1+(M -A)(A-N)"S} (A-N)" (4 -N)

172

(1-7)"(1-5)"8"ys" (1-5)" (1-T)" (M =N)" (A= N)"{1+(M - A)(A-N) "5} .

-1

~4{r+(M-A)(A-N)"S} (A-N)"*(M-N)"(1-5)

172

TV2gV2ZqV2T12 (1 - )1/2 %
(M=N)"(A=N)"{1+(M - A)(A-N)" S}_l}deS (3.12)

for Re(al,az,a3) > ( )4 —1) /2. Then, for p =2 , the M-transform of the double integral defined by G

above in (3.12) with respect to the variables X ,Y,Z and the parameters p,, 0,, 0, respectively is given by
2p+Py+ps

M (G)=|1+(M -A)(A-N)" M(H,) (3.13)

where M —A>0,M —-N>0, A—N>0 and FC(3) represents the Lauricella function F. of three
variables (see Exton [11], or Srivastava and Karlsson [14], for instance) .
Proof: We first recall here that the M-transform of the Lauricella function FC of n variables with n real

symmetric positive definite matrices as arguments is defined by Mathai [4, (6.3), p.76] as follows:
For

F.=F.(a,b;c,,....c,;—X,,....—X,)

164 Bulletin of Pure and Applied Sciences
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{ﬁ{rp(cj)rp(pj)}}rp(a—pl—...—pn)l“p(b—pl—,..—p”)

M(F,)=-= (3.14)
b){HFp(Cj_pj)}
=
where Re(pj,cj—pj,a—pl—...—p”,b—pl—...—pn)>(p—1)/2,j:1,...,n. From where it can

be readily inferred that for the function involved in the integrand of (3.12) we can easily write form (3.14) that

3
]y A e )
@) __Un

FC 1 3 X
a+a, ta,+ a+a,+a
Fp( 1 22 3 JFP( 1 2 3 4 J{HFP(C _ )}

J=

a+a,+a, 1
Fp(%j—pl—pz—pgj (3.15)

Now taking the M-transform of the right side of (3.12) with respect to the variables X,Y,Z and the

parameters Q,, 0,, 0, respectively, we have
p-(p+)2 3| @ +a, ta,+1 a +a,+a; 1
5~(p+1) FC(‘)|: 1THTHRT AT TS 4;61,62,63;

J‘ J‘ J‘ |X|P1‘(I’+1)/2|Y|P2‘(I’+1)/2|Z
x>0dy>0J250 2 2

—4{I+(M—A)(A—N)_IS}_I(M—N)(A—N)_I(I—T)UZT”ZSXST”Z(I T)*(A-N)"'x

1

(M= N){1+(M -A)(A-NY"S} ~4{1+(M -A)(A-N)"S} (A=N)" (M - N)"x

(I—T)UZ(I—S)UZ SUZYSUZ(I—S)UZ(I—T)UZ (M N)I/Z( N)_1/2{1+(M —A)(A—N)_l S}_l,

~a{r+(M=A)(A-N)"S} (A=N)"" (M =N)" (1-5)"T"8" 281" (1 - 5) " x

1/2

-1
(M =N)"(A=N)"{1+(M -A)(A-N)"s} }dXdeZ (3.16)
Applying the transformations

X, =4{1+(M ~A)(A-NY'S} (M -N)(A-N)"(1-T)" 1" SXST" (1-T)" (A-N) "
(M - N){1+(M -A)(A-N)"s}

Yo=a{1+ (M -A)(A-N)"S} (A-NY" (M =N)"*(1-T)" (1-5)" $"¥s" (1-5)"x

-1

(1-7)" (M =N)"(A-N)"{1+(M -A)(A-N)"5}

-1

z,={1+(M-A)(A-N)"S} (A-N)"" (M -N)"(1-5)"T"5"25"T" (1 -5)" x

-1

(M =N)"(A=N)"{1+(M -A)(A-N)"5}
with

L) "
dX, = 4P| (M =A)(A-N) S| 1 M - N|™"

|A— N|—(p+1) |I —T| (p+1)/2 |T| p+1)/2 |S|p+1
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dy = 4p(p+1)/2 -1 S ~(p+1) |M _N|(ﬂ+1)/2 |A_N|—(ﬂ+1)/2|1 _T|(ﬂ+1)/2|1_ S|(ﬂ+1)/2|S|(ﬂ+l)/2

I+(M -A)(A-N)

dz, = 4p(p+1)/2 lS (r+1) |M _ N|(p+1 )2 |A |—(ﬂ+l)/2 |I _ S|(ﬂ+1)/2 |T|(ﬂ+1)/2 |S|(ﬂ+1)/2 dz

I+(M -A)(A-N)

and

1X,| =47 |1 +(M = A)(A=NY IM NF|A=N[*|1=T|[7]|SF|X]

[r[=4"

I+(M - A)(A-N)

= N[ == sis[|v]

|Z,|=4"|1+(M -A)(A-N)

| |m - N|A- =]z
in (3.16), and then writing the M-transform of the FC function with the help of (3.15), it gives

A pr+pytps) _N|—2p,—p2—;g |A_N|2/71+/72+/73

4‘/’(/’1"‘/’2"’/’3)

I+(M-A)(A-N)"S

I— T|—P1—/72 X

fl{r,,(c_»r,,(p_,.>}}r,,(“l+“2;“3“—pl—pmj

|T|—p1—p3 |S|—2p1—pz—p3 |I _ S|—/’2—/’3 { Jj=1

X
a,+a,+a;+1 cl+c12+cl3
r(aterertn [arere T (o)
a+a,+a, 1
| —2 "3 4+——p—p,—p, | (3.17)
p( ) 4 PP st
The above expression on simplification with the help of (1.8) yields
_1|2eteatps) 2 p—py— g - 2 p—py—
‘I+(M—A)(A—N) lS —N| 2p-p2 p3|A_N|2p1+pz+p3 I—T| A /’2|T| PI=P3 S| 2p-p2 p3x

3
{H{F,, ()T, (o, )}}Fp (@, +a,+a,-2p, =2p,~2p)
IEN = - . (3.18)
L, (al +a, +aa){HFp (C.f _p.f)}

J=1

Substituting this expression on the right hand side of (3.12) and integrating out T in the resulting expression by
using (1.6) leads us to

{fI{F,,(c_,-)F,,(p_,- )}}F,,(al +a,+a,=2p,=2p,=2p,)L (a, =~ p, = p,)T, (0, = p, = p,)

J=1

X
3
F,,(al)F,,(az)F,,(%){HF,,(c_,-—p_,-)}F,,(al+az—2p1—p2—p3)
Jj=1
|M Ndl+d2 A— N_dl_d2 j(: Sdl+d2_2pl_p2_p3 (p+1 /2|1 S a3=p,=p5=(p+1)/2
_ —aj=ay=a3+2( py+py+ps)
[+ (M -A)(A-N)"s e (3.19)

We now return to (1.9) and observe that if in this equation we set & =a,+a,—2p0,—p,—p,,
y-oa=a,—p,—p,, f=a,+a,+a,—2p,—2p, —2p, which gives that ¥ = and further observing
that 2FI(OZ, 7, }/;—X) = 1FO(CV, ; ;—X) =|I+X|_a, where, X Z(M —A)(A—N)_1 we can write
the S - integral of (3.19) as
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Fp(al+aZ+aS_2pl_2p2_2p3) J'1|S
Fp(al+az_2p1_pz_p3)rp(a3_p2_p3) 0

a+ay=2p—py—py—(p+1)/2 X

Fp(a3_p2_p3)

az=p,=ps—(p+1)/2

1-5 I+(M—-A)(A=N)"'S

—a=ay=as+2 p+py+ps)
ds

:Fp(a3_p2_p3)1E)[al+az_2:01_:02_:03; ;_(M_A)(A_N)_l]

"= t2p 40+
=T, (a;—p,—p;)|I +(M —A)(A=N) (3.20)
We also observe that
M =N =|(M = )+ (A= N[ = =AY (A= NY 1 A=

whence follows that

M =N |A=N|"™" =1+ (M~ A) (A~ N)_l‘wz (321)
Finally it can be seen that (3.19) simplifies to the right hand side of (3.13) with the aid of (3.20), (3.21) and
@2.1). |

4. CORRESPONDING RESULTS FOR THE FUNCTIONS OF COMPLEX MATRIX ARGUMENT

We now list the corresponding results for the above cases when the argument matrices are Hermitian positive
definite (see also section 4, pp. 213-215 of [8]) in this section. We mention that, all the matrices are Hermitian

positive definite matrices of order ( pX p) in this concluding section of the paper. We prefer to use the same

notation for matrices (complex matrices) in this section as we have used in the previous sections of this paper,
but, for the sake of the interested reader, we do point out here that Mathai [6] has denoted the matrices having
complex entries by placing a tilde (=) sign over the notation of the matrix concerned. The results concerning
the Jacobians of matrix transformations in the case of matrices when their elements are complex quantities are
available in the Chapter 3 of Mathai [6]. The complex analogues of all the results mentioned in (1.1) to (1.9)
(except (1.8)) above can be found in Chapters 3 and 6 of Mathai [6]. We also remark here that for the result

developed in the Theorem 3.8, which is valid only for (2)(2) real symmetric positive definite matrices and

because the complex analogue of the result in (1.8) (in fact, the complex case of the analogue of Lemma 5.4 of
Chapter 5 p. 340 of Mathai [6] ) has a different structure (see also Mathai [6], Chapter 6, p.399) therefore the
corresponding complex analogue of the result given in the Theorem 3.8 has a different structure therefore it is
not given here. The key point to be noted here is that the complex analogues of the results in the Definition 2.1
and the Theorems 3.1 through 3.7 can be most easily written down with the help of the results in (2.1), (3.1),

(3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) respectively, by replacing the expression (p + 1) /2 appearing in the

power of the determinant of the matrix by p and in the condition of convergence of the integral, the

expression Re(.)>(p—1)/2 has to be replaced by Re(.)>(p—1) (see Mathai [6], pp. 364-365 and see

also Mathai and Provost [7]). With the help of these observations, which are already very well established in the
literature beforehand (e.g., Mathai [6] and Mathai and Provost [7]), we state below (without proofs) the complex
analogues of the definition and results in (2.1), (3.1), (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) in the form of the
statements of the Definition 4.1, Theorems 4.2 through 4.8 respectively. Appealing to the complex analogues of
the corresponding results in (1.1) to (1.9) (except (1.8)) which are available from the Chapters 3 and 6 of
Mathai [6] and following the same parallel steps as we have done for deducing these results in Section 3 of this
paper (see Chapters 5 and 6 of Mathai [6]) we can prove these corresponding complex analogues. It is also to

be borne in mind here that in this section of the paper |A| now represents the absolute value of the determinant

of the matrix A of complex elements.

Definition 4.1: The Srivastava function H , of complex matrix arguments
H,=H,(a,a,,a;;¢c,,¢,,c;;—X,—Y,~Z)

is defined as that class of functions which has the following matrix-transform (M-transform):
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M (HB) = J.X>0J.Y>OJ.Z>O|X|pl_p |Y|p2_p |Z
_ Fp(al P _p3)rp (az 5 _pZ)F[) (03_p2_p3)x
Fp (al)rp (QZ)Fp(QS)

L, (@)L, ()T, ()T, (AT, (2,)T, (p))

"H,(a,,a,,a;c,,¢,,c5;—X ,~Y,~Z)dXdYdZ

4.1
Fp(cl_pl)rp(CZ_pZ)Fp(CS_pS)
for Re(a,— p,— Py, a,— P, = PGy — Py — PssC; = Pis ;) > (p—1), where, i =1,2,3.
Theorem 4.2:
r (s) Iy e e
H,(a,,a,a;c,¢,,05,—X,~Y,-Z) = L T|" "1 -T|™""x
B(al ay,035C1,Cy,Cy ) Fp(al)rp(s_al)_'.o |
H,(s.a,.a;;¢.¢,,c;-T""XT'"”,—Y,-T""ZT"*)dT ~ 4.2)
for Re(s—a,,a,)>(p-1).
Theorem 4.3:
r (s) Iy e e
H,(a,,a,a;c,¢,,¢5,—X,~Y,~Z) = 2 T|" "|1-T]"""%
B(al ay,035C1,Cy, Cy ) Fp(az)Fp(s—az)J.O |
H,(a,s.a5:¢,,¢p,05-T"XT ,~T"*YT" ,~Z)dT (4.3)
for Re(s—a,,a,)>(p-1).
Theorem 4.4:
r (s) Iy o ane
H,(a,a,,a;;c,,c, 05— X,~Y,~Z) = 2 T|" " |1-T]™"x
s(ana5,a550,0500 ) Fp(ag)rp(s_%)".o |
H,(a,.a,.57¢.¢,,05=X,=T""YT"? =T ZT"*)dT  (4.4)
for Re(s—ay,a,)>(p—1).
Theorem 4.5:
r (c) Iy e s
H,(a,,a,,a5¢,¢),c5-X,-Y,-Z) = L2 T -1"""x
B(al ay,035C1,Cy,Cy ) Fp(s)rp(cl—S)J.°| |
H,(a,.a,.a;5,¢,,c;-T"XT",~Y,~Z)dT 4.5)
for Re(c,—s,5)>(p—1).
Theorem 4.6:
r (c) Iy e P
Hy(a,a,,a55¢,,¢,,¢5—X,—Y,~Z) = AN T "|1-T]""" %
B 127253512 ~2°%3 FP(S)FP(CZ—S)J.O| |
H,(a,.ay.a5¢,,5,¢,-X,~T"YT",~Z)dT (4.6)
for Re(c,—s,5)>(p—1).
Theorem 4.7:
r (c) Iy e g
Hy(a,a,,a55¢,¢5,05—X,—Y,—Z) = p T "|1-T|""" %
B 127253512 ~2°%3 FP(S)FP(CS—S)J.(J |
H,(a,.a,.a5c,,c,,8—X ,=Y,~T"*ZT"*)dT 4.7)
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for Re(c, —s,5)>(p-1).

Theorem 4.8:
I (a +a) I e e
H,(a,,a,a5;¢,,¢y,05—X, =Y ,~Z) = —L2 2| '|T|""|1 -T|" "%
B 1°72°%35 =12 ~22 >3 Fp(al)rp(az)".0| |
a,+a,,a,+a,;a, +a,,a;;a, + a,,a,
) G a5 G
|
l—(I—T)UzT”zXT”Z(I—T)Uz,—(1—T)UZY(I—T)Uz,—TUZZT”Z}dT (4.8)

for Re(a,,a,)>(p-1).
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