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Abstract 
 
Earlier, authors presented [1] and published [2] investigated failure nature, repair pattern and 
reliabilities of hydro power generators, using simple statistical tools and simulation techniques 
respectively. It is identified that analysis of hydro power generators require a special approach by 
dividing the repair into two categories based on the repair duration. That is i) Minor repairs (Repair 
hours less than or equal a threshold value T) and ii) Major Repairs (Repair hours greater than a 
threshold value T).This approach is specially introduced by authors [1, 2] and obtained good fit of 
“truncated exponential failure model”. Through this proposed model reliabilities are estimated and 
conclusions were drawn. In the above work, we have assumed that the system after repair is ‘as good 
as new’. On the basic assumption that the system after repair is not ‘as good as new’ and also the 
successive working times are stochastically decreasing while, the successive repair time’s are 
stochastically increasing and are exposing to exponential truncated failure law. Under these 
assumptions, an optimal replacement policy T in which we replace the system when the repair time 
(working time) reaches T. It can be determined that an optimal repair replacement policy T* such that 
the long run average cost per unit time is minimized. It can also be derived an explicit expression of the 
long-run average cost and the corresponding optimal replacement policy T* can be determined 
analytically. Numerical results are provided to support the theoretical results. 
 
 
 
1. INTRODUCTION 
 
 In modern Industry, millions of rupees are being spent to produce highly quality and reliability 
products. It requires optimal decisions to the maintenance problems of the systems. Obviously, 
minimizing the cost, maximizing the profit, and make sure that the reliability of the system shall be 
maximum. In the early stage, many replacement models were developed under the assumption that the 
system after repair is “as good as new”.   This leads to a perfect repair model.  But it is not always true 
for deteriorating systems due to ageing and accumulated wear. In this direction Barlow and Hunter [3] 
developed a minimal repair model in which the minimal repair does not change the age of the system. 
authors presented [1] and published [2] investigated failure nature, repair pattern and reliabilities of 
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hydro power generators, using simple statistical tools and simulation techniques respectively. It is 
identified that analysis of hydro power generators require a special approach by dividing the repair into 
two categories based on the repair duration. That is i) Minor repairs (Repair hours less than or equal a 
threshold value T) and ii) Major Repairs (Repair hours greater than a threshold value T).This approach 
is specially introduced by authors [1, 2] and obtained good fit of “truncated exponential failure 
model”. Through this proposed model reliabilities are estimated and conclusions were drawn. In the 
above work, we have assumed that the system after repair is ‘as good as new’. 
 
Brown and Proschan [4] proposed an imperfect repair model under which the repair will be perfect 
repair with probability ’p’ and with probability ‘(1-p)’ as a minimal repair. Much research work has 
been carried out by   Block et al [5,6] and others have also worked in this direction. It is reasonable to 
assume that the successive working times of the deteriorating systems after repair will become shorter 
and shorter, while the consecutive repair time of the system will become longer and longer. Finally it 
can’t work any longer, neither can it be repaired. To model such a deteriorating repairable system 
Stadje and Zukerman [9] discussed two maintenance models for repairable systems. Further, they 
determined optimal maintenance strategies for some age dependent cost functions.  
 
Wang and Zhang [10] discussed the optimal replacement problem for a system with two types of 
failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the 
other is un-repairable, which leads to a replacement of the system at once. The repair of the system is 
not ‘as good as new’. Under these assumptions, two replacement models are considered, one is based 
on the limiting availability and the other based on the long-run average cost rate of the system. They 
derived an explicit expression for the limiting availability and the long-run average cost rate of the 
system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the 
long-run average cost rate C(N), They theoretically obtain the optimal replacement policies N* in both 
the cases. In this direction, K.S.Venkateshan and S.Venmathi [7] estimated an optimal replacement 
policy T of equipment via simulation for truncated failure distributions under the assumption that the 
life time of equipment is one year. But in most of the cases the life time of equipment may not be one 
year. Based on this understanding the present paper study a simple repairable system with one 
repairman assuming that the system after repair is not ‘as good as new’ and also the successive working 
times are stochastically decreasing while, the successive repair time’s are stochastically increasing and 
are exposing to exponential truncated failure law. Under these assumptions, an optimal replacement 
policy T in which we replace the system when the repair time (working time) reaches T. It can be 
determined that an optimal repair replacement policy T* such that the long run average cost per unit 
time is minimized. It can also be derived an explicit expression of the long-run average cost and the 
corresponding optimal replacement policy T* can be determined analytically. Numerical results are 
provided to support the theoretical results. 
 
2. THE MODEL 
 
In this section, we consider that a new system is put into operation at time 0.When the system if fails, a 
repairman is immediately assigned to repair it. However, the system after repair is not as good as new. 
The duration time 0 to completion of the repair of the first breakdown is called the first cycle. After the 
system is repaired and put into use again, it enters into second cycle. The second cycle length ends at 
second failure is completed. The time interval between n-1 th repair and nth repair of the system is 
called nth cycle. Because the system after repair is not as good as new, the life of the system after each 
additional repair is stochastically decreasing and the life of the system is finite. An optimal replacement 
policy T for repairable system using truncated exponential failure law is studied under the following 
assumptions: 
 
ASSUMPTIONS: 
1. Assume that that system is put into operation at time t=0. 
2. As soon as the system fails, it is immediately repaired by the repairman 
3. Let the system after repair is not ‘as good as new’. 
4. The time interval between the completion of the (n-1)th  repair and the completion    
       of  the nth repair of a system. 
5. Let   Xn and Yn are all independent, for   n=1, 2, 3….. . 
6. Let   Xn and Yn be successive working time and the successive repair times of the  
       system and both the processes are exposing to truncated exponential failure law.  
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7. Let Fn(X) and Gn(Y) be the distribution function of  Xn and Yn respectively,   
            n=1,2,….  

8. Let 0,;1)()(,1)()(
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9. Assume that repair time(working time) is truncated at T  such that the     
       underlying distribution is good fit to the data sets. 
10.  Assume that an optimal replacement policy T is applied. 
11. Assume that the repair time is less than or equal to  . i.e., T  then the repair is  
       repairable failure with probability ‘p’ while, the repair time greater than   then   
       the repair is un- repairable failure with probability ‘1-p’. 
12. Let Cf be the repairable cost and Cp be un-repairable cost. 
13. Assume that failure cost is larger than replacement cost. 
 
Under these assumptions, an explicit expression for the long-run average cost per unit time under the 
policy T is considered and an optimal solution for T* which minimizes the long-run average cost per 
unit time, is discussed in the next section. 
 
 3. THE LONG-RUN AVERAGE COST RATE UNDER POLICY T   
   
Let Tn (n>2) be the time between the (n-1)th  replacement and the nth replacement of the system under 
policy T.  Clearly {T1, T2…. } form a renewal process and the inter arrival time between two 
consecutive replacements is called renewal cycle. 
According to renewal reward theorem Ross [8], the long-run average cost rate under policy T is: 

The expected cost incurred in a renewal cycle    ( ) .
The expected length of the renewal cycle           

C N                          (3.1) 
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According to the assumption (10), let f(t) be an exponential failure model truncated at  , the truncated 
failure model is: 
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Then the distribution function F(x) is given by: 
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Using the equation (3.3)  , the equation (3.2) becomes: 
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This is the long run average cost rate function. 
Using this C (T), the optimal replacement policy T* is determined by numerical methods such that C 
(T*) is minimized. The next section provides some numerical results to highlight the obtained 
theoretical results. 
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4.   NUMERICAL RESULTS AND CONCLUSIONS 
 
For the given hypothetical values of the parameters of λ=0.01281, Cf= 600 and Cp = 6 the long-run 
average cost per unit time is calculated from the expression (3.4) as follows:   
 
Table 4.1: Values of the long-run average cost rate under policy T. 
 

Time (T) C(T) Time (T) C(T) 
1 17.29069 25 8.843584 
2 12.33445 26 8.881223 
3 10.71189 27 8.920432 
4 9.923023 28 8.961093 
5 9.467839 29 9.003104 
6 9.179679 30 9.046377 
7 8.987118 31 9.090838 
8 8.854444 32 9.13642 
9 8.76182 33 9.183067 
10 8.697343 34 9.230729 
11 8.653442 35 9.279362 
12 8.62507 36 9.328927 
13 8.608732 37 9.379392 
14 8.601935 38 9.430726 
15 8.602851 39 9.482903 
16 8.61011 40 9.5359 
17 8.622665 41 9.589697 
18 8.639701 42 9.644276 
19 8.660579 43 9.699621 
20 8.684785 44 9.755717 
21 8.711904 45 9.812553 
22 8.7416 46 9.870118 
23 8.773594 47 9.928402 
24 8.807653 48 9.987398 
  49 10.0471 
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If the underlying distribution is truncated at time T=17 hours, we obtained the following frequency 
distribution: 
 

Time(in hours) 0 - 2 2-4 4-6 6-8 8-10 10 – 12 12-14 14-16 
Number of values 7 15 9 5 1 3 4 3 

 
It is also verified that the statistical hypothesis H0: “The truncated exponential distribution Truncated at 
T=17 is a good-fit”. It is accepted at 5% L.O.S. The chi-square value and critical value at 5% level of 
significance are calculated as 6.5714   and 7.8147 respectively. Since we got good fit the parameters of 
the fitted distribution are λ=0.01281 , Cf= 600 and Cp = 6. With these parameters the ACR is 8.6225 at 
identified optimal truncated time T=17 hours. Thus, the hydro power generator is to be replaced at 
T=17 because the ACR is minimum. This can be observed in the table and the corresponding graph 4.1. 
In paper [2] truncated point is determined based on the reliabilities. In this paper, it is identified based 
on the cost. 
 
Further, earlier works and common sense says that as failure rate “λ” increases the replacement time of 
the power generator will reduce. That is there exist a negative correlation between λ and T. This 
concept is verified in the following tables 4.2 and 4.3 by changing λ =0.075 and λ= 0.095 respectively. 
The obtained results presented in graphically in 4.2 and 4.3 respectively.  
 
Table 4.2: Long run Average Cost Rate (ACR) values 
 
For the given hypothetical values of the parameters of λ=0.075, Cf= 100 and Cp = 30 the long-run 
average cost per unit time is calculated from the expression (3.4) as follows:    
 
Time T C(T) Time T C(T) Time T C(T) Time T C(T) 
1 37.67974 14 14.57119 27 21.79356 40 34.56424 
2 22.95588 15 14.91811 28 22.57948 41 35.76598 
3 18.24459 16 15.30432 29 23.39834 42 36.99546 
4 16.04646 17 15.72743 30 24.25023 43 38.2514 
5 14.86206 18 16.18576 31 25.13524 44 39.5324 
6 14.19202 19 16.67815 32 26.05338 45 40.8369 
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7 13.82269 20 17.20381 33 27.00458 46 42.16321 
8 13.64756 21 17.76224 34 27.98871 47 43.5095 
9 13.6078 22 18.35315 35 29.00553 48 44.87378 
10 13.66837 23 18.97641 36 30.05471 49 46.25399 
11 13.80726 24 19.63199 37 31.13581   
12 14.01002 25 20.31996 38 32.24824   
13 14.26692 26 21.04044 39 33.39133   
 

 
 
Table 4.3: Long run Average Cost Rate (ACR) values 
 
For the given hypothetical values of the parameters of λ=0.095, Cf= 100 and Cp = 30 the long-run 
average cost per unit time is calculated from the expression (4.3) as follows:    
 
Time T C(T) Time T C(T) Time T C(T) Time T C(T) 
1 38.37302 13 19.27977 26 32.37745 39 53.30579 
2 23.80498 14 19.94068 27 33.75995 40 55.0695 
3 19.26182 15 20.66508 28 35.19046 41 56.83258 
4 17.24484 16 21.45013 29 36.66706 42 58.58997 
5 16.25545 17 22.29389 30 38.18745 43 60.33667 
6 15.79505 18 23.19502 31 39.74905 44 62.06779 
7 15.6508 19 24.15254 32 41.34891 45 63.77855 
8 15.71706 20 25.16573 33 42.98375 46 65.46441 
9 15.93579 21 26.23398 34 44.64997 47 67.12105 
10 16.2728 22 27.35669 35 46.34367 48 68.74445 
11 16.70688 23 28.53323 36 48.06065 49 70.33092 
12 18.68647 24 29.76285 37 49.79647   
  25 31.04463 38 51.54646   
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It is observed that as λ is increases the cost of the repair is also increasing accordingly and the truncated 
point decreases. Thus, the parameter λ, the failure rate is positively related with cost of the repair and 
negatively related with truncated time point T. 
 
5. FURTHER SCOPE OF THE WORK 
 
 In this paper, we have considered truncated exponential failure model. Similar exercise can also be 
extended to other truncated laws. However, the work in this direction is progression well. 
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