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Abstract

In the present paper | have defined the Exton's &1 and &3triple hypergeometric functions of

matrix arguments and have established two integral representations for them (one for each) using the
Mathai's matrix transform technique.
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1. INTRODUCTION

The very broad character of the theory of the Gauss's hypergeometric function , F, paved the

way for extension of this fruitful theory to the case of two and more variables. The first widely
acclaimed generalization of this theory to the corresponding functions is attributed to Appell [1] who
gave four generalizations of this function to the two variables case which have been hailed in the
literature as the Appell's functions. Later on Horn devoted his life extensively to the paramount task of
the very systematic examination of all the double hypergeometric functions of the second order and in
a series of papers, (i.e., Horn [4,5,6]) he gave a final list of thirty four functions which included
fourteen complete series ( for instance, see Exton [2], Srivastava and Karlsson [10]). It is in this

terminal list of the complete functions given by Horn, there appear the two Horn's functions H,

and H,. Later on, Exton [3] in 1982 gave twenty triple hypergeometric functions &1""'&20 which
according to him [3, p.113] are the generalizations of the Horn's double hypergeometric functions H,

and H, (see also Srivastava and Karlsson [10], p.287). The present paper aims at defining the Exton's

@(1 and &3 triple hypergeometric functions of matrix arguments and some properties of these

functions will be studied by using the Mathai's matrix transform technique. The matrices appearing in
this paper are all real symmetric and positive definite with order (px p). A>0 Will mean that the

matrix A is positive definite. A* will represent the symmetric square root of the matrix A. While




Lalit Mohan Upadhyaya / On Exton's Triple Hypergeometric Functions of Matrix Arguments-I

integrating over matrices .[X f(X)dX represents integral over X of the scalar function f(X). Re(.)
denotes the real part of (.).
I begin with quoting some preliminary results and definitions which occur in the literature. Mathai [7]

in 1978 defined the matrix transform (M- transform) of a function f(X) ofa (px p) real symmetric
positive definite matrix X as follows:

M (p) =] 0|x|"‘“”1”2 f (X)dX L)
for X >0 and Re(p) > (p—1)/2 whenever M, (s) exists.

The following results and definitions will be used by me at various places in this paper.

Theorem 1.1: (Mathai [8], eq.(2.24), p.23)- Let X and Y be (pxp) symmetric matrices of
functionally independent real variables and A be a (px p) non singular matrix of constants. Then,

Y = AXA' = dY =|A/"" dX (1.2)

and

Y =aX = dY =a""P?gx (1.3)
where a is a scalar quantity.

Theorem 1.2: Type-2 Beta integral (Mathai [9], (eq. (2.2.4), p.36 and eq. (2.1.2), p.32)-

a(p+ ~(a+ I (@), (B)
B Y|Py [P gy = 22 e P .
s )= Y[y t B (L4)
for Re(a) > (p—-1)/2,Re(B) > (p—1)/2, where,
Ty(a)=7""""I(a)T(a-3)-T(a-22) (1.5)

for Re(a)>(p-1)/2.

Theorem 1.3: Type-1 Beta integral (Mathai [9], (eq. 2.2.2, p.34 and eq. (2.1.2), p.32)-
I (@), (B)
p P
B ((X ﬂ) J‘0<X<I

- X|ﬂ (P2 gy = p (1.6)
for Re(a) >(p-1)/2,Re(B)>(p-1)/2.

-(p+)/2 |

[ (ax+p)

Theorem 1.4: Gamma integral (Mathai [9], (eq. 2.1.3, p.33)- For real symmetric positive definite
matrices X and B of order (px p)

[ X[ e @ax < B[ T, (@) an

for Re(ar) > (p—1)/2 where tr(X) denotes the trace of the matrix X .

Theorem 1.5: (Mathai [9], eq.(3.2.7), p.55) The M-transform of

(a1 ., r, ..,bs;_)( ..-X )
is the following, where X,,-- X are (px p) real symmetric positive definite matrices.
pi=(p+1) /2 pa—(p+1)/2 )
M( ) J‘X>0 J‘X >0| | |X (a1 !“'!bs1_xl_"'_xn)x

dX, -+ dX
_ {szll“p(bj)}{nlzll“p(ak —p, _..._pn)}{H;:lrp(pm)}
(RS re—

(1.8)
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for Re(a,—p,——p,0,—p,—=p,p,)>(P-1)/2 and k=11 j=1:,s;
m=1---,n.

Theorem 1.6: (Mathai [9], (eq.(6.13), p. 84) - For p=2,
,Thl@+)/2-pIr [(2a+1)/4-p] T,(a-2p)
T,[(a+1)/2]r [(2a+1)/4] r,(a)

-p

(1.9)

Definition 1.1: The Appell's F, function of matrix arguments F, =F,(a,b;c,c’;—X,=Y) is
defined as that class of functions for which the matrix transform (M-transform) is the following:

MFD=[ o f XN R @bie eti-X -Y)dXdy
_ Fp(a_pl _pZ)rp(C)rp(Cl) 1—‘p (b 2 _pZ)rp(pl)rp(pZ)

: (1.10)
1—‘p(a')l—‘p(b) 1—‘p(c_/)l)l—‘p(c _pZ)
for Re(a—p,—p,,b—p,—p,.C—p,,C'=p,, ., p,)>(P-1) /2.
Definition 1.2: The |, F, function of matrix arguments, .F, = F (ai,-n,ar;bl,-n,bs;—X)
is defined as that class of functions which has the following matrix transform:
p~(p+1)/2 ) )
M(.F)=[ [X| Fo(@yo,a,by,0 e b =X ) dX
L 6L o)
—a ‘ r1 r,(p) (1.12)
{ k:lrp(bk _p)}{Hmzlrp(am)}

for Re(p,a, — p,b, —p) > (p-1)/2 where, m=1---,r;k=1,---,s.

2. DEFINITIONS OF THE EXTON'S FUNCTIONS

8,,8,;8),8,;8, 8|

Cpi Ci G |
arguments is defined as that class of functions which has the following matrix transform (M-

transform):
M (&1) - J.X>OJ.Y>OJ.Z>O|X

&{ai,ai:ai,ai:apazl_
Cy G € |
_ rp(al —2/31 —2/32 _p3)rp(a2 _p3)rp(c1)rp(Cz)rp(pl)rp(pz)rp(p3)
rp(al)rp(aZ)rp(Cl_pZ_pB)rp(CZ_pl)
for Re(a, =20, —2p, = p3,8, = P3,C, — P, = P3,C, = P1, P1s P2 P3) > (P—1) [ 2.

Definition 2.1: The Exton's function &12&1{ —X,—Y,—Z} of matrix

p=(p+1)/2 |Y |pz—( p+1)/2 |Z|p3—( p+1)/2 %

X,-Y,-Z } dXdYdz

.1)

a,8,;8,8,,8,,|
C: G G |

p—(p+1)/2 |Y |pz—( p+1)/2 |Z |p3—( p+1)/2 %

Definition 2.2: For Exton’s function &3 = &{

M (%)=, ol ool

5 {ai,ai:ai,az:apazl
3
G, G G |

—X,—Y,—Z}

-X,-Y, —Z}dXdeZ
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_ rp(al - 2/31 — P p3)rp(a2 —Pr— pB)Fp(Cl)Fp(CZ)Fp(pl)rp(pZ)rp(pB)
rp(al)rp(aZ)rp(Cl P _pZ)Fp(CZ _p3)
for Re(a1_2p1_p2_p3iaz —P; = P3G — P~ P56, _p3lp11p21p3)>(p_1)/2-
3. INTEGRAL REPRESENTATIONS FOR THE EXTON’S FUNCTIONS &1 AND &3 OF
MATRIX ARGUMENTS

Now we proceed to derive two integral representations for the Exton’s @(1 and &3 functions of
matrix arguments in the form of the two succeeding theorems:

2.2)

Theorem 3.1:
@;a,,8,;8,,4a I (c a,—(p+ —a,—(p+ -
%{315.‘1315.1131 2|—X,—Y,—Z}: p(l) J'"U 2(pl)lz‘l—u‘cl 2(pl)lz‘lﬁLU%ZU}/2 N
G G G | Fp(aZ)rp(Cl_aZ) 0

F{alT”, 2314+1;c2,c1—a2;—4(| FURZU%) X (14U%Z0%)

4(1+U%20%) " (1-U YAy (1-U )41 +U%ZU%)_l}dU (3.1)

for p=2,0<U <1 andfor Re(a,,c,—a,)>(p—1)/2.

Proof: Taking the M-transform of the left side of eq.(3.1) with respect to the variables X,Y,Z and

the parameters p,, p,, p, respectively we obtain,

J.X>OJ.Y>OJ.Z>O|x

F{ai—ﬂ, 2314+1;c2,c1—a2;—4(| +URZU%) X (140720 %)

-a
X

p—(p+1)/2 |Y |p2_( p+1)/2 |Z |p3_( p+1)/2 ‘ I + U %ZU %

-1

2
4(1+U%20%) " (1-U) Y (1-U)* (1 +U%ZU %)_l}dXdeZ (3.2)

Applying the transformations
X, =4(1+U%z0%)" X (1+U%ZU*%)

-1

-1

Y, =4(1+U%ZU%) " (1-U )Y (1-U)#(1+U%20%) ", and Z,=U*ZU* sothat

X, =4(1+2,) X (1+2,) ", Y, =4(1+2,) " (1-U)*Y (1-U)*(1+2,)", and

dX, =47 2|1 1 Z [PV dX | dY, = 4P|+ 2, PP -u PP dy,

4z —|U |(p+1)/2
=

X[ =41 +Z,[*|X|, M| =471 + 2] * |1 ~U|IY|,|Z,| =|U]|Z| renders the eq.(3.2) as below,

4—P(P1+Pz) || —U |-Pz |U |—p3 IX1>0IY1>OI21>0|X1 p—(p+1)/2 |Y1|Pz—(P+1)/2 |Zl|p3—(P+1)/2 %

1+ z,[C ) [%T” 2314+1; €, — i~ Xy, —Yl} dx,dv,dz, 3.3)

dZ (from theorem (1.1)) with,

Writing down the M-transform of an F, function (definition (1.1)) and integrating out Z, by using a
type-2 Beta integral (theorem 1.2), we get,
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—P3 rp(al - 2p1 _sz _p3)rp(C2)rp(Cl B az)

X
1 2a,+1
r,)(al—zpl—2pz>rp(""12+ jr[ e j

4—P(91+Pz)|| —U |‘p2 |U |

2 4
rp(cl_aZ _pZ)rp(CZ _pl)
Substituting this expression on the right side of eq.(3.1) and integrating out U by means of a type-1

1 2a +1
Fp(al+ _Pl_PZJFP( e _pl_pzjrp(pl)rp(pZ)rp(’%)

(3.9

Beta integral (theorem 1.3) and utilizing the theorem (1.6) we finally arrive at M (@(l) as given by
eq.(2.1), thereby finishing the proof.

Theorem 3.2:
ya,8,,a,,4,,a a—(p+ a—(p+
&{6‘1 31 & g & 2|—X,—Y,—Z}: 1 J' J‘ e-nr(sl+sz)|sl ,~(p 1)/2|52| (P2
¥ c,; c, | rp(ai)rp(az) $,>045,>0
oFi( 16i-8XS - 8,8V o ( 16,i-8,'8("Z8 /'S Jds.ds, @39

for Re(a,a,)>(p-1)/2.
Proof: Taking the M-transform of the left side of eq.(3.5) with respect to the variables X,Y,Z and

the parameters p,, p,, p, respectively we arrive at,
=(p+1)/2 |\ ,1p2=(PH1)12 | 5 | ps=(P+1)/2
X" Y z X
J.X>OJ.Y>OJ.Z>O| | | | | |

oFi( 5Ci—S.XS, —S/'SYS'S ) R ( 5c,5-S1°5{Z8 s} | dXdYdz (3.6)
On the application of the transformations,

X, =S,XS,,Y, = S/tS/¥S/*S )2, 7, = /i85 /275 /25 /¢
with — dX, =[S, dX,dY, =[S,[""*|s[ " dY, dz, =3, ""s,]
theorem (1.1)) and |X1| = |Sl|2 |X |,|Y1| = |SZ||Sl||Y|,|Zl| = |52||Sl||Z| ) in the expression (3.6) then
utilizing the definition (1.2) and the theorem (1.5) leads us to,

|Sl|—2p1—pz—p3 |82 |—pz—p3 r p (C]_)r p (CZ )r p (pl)r p (pZ )r p (p3)
rp(Cl P _pZ)Fp(CZ _p3)
Substituting this expression on the right side of eq.(3.5) and integrating out the variables S, and S, by

(p+1)/2

dZ  (from

(3.7)

using a Gamma integral (theorem (1.4)) ultimately generates M (&3) in conformity with eq.(2.2),
thereby concluding the proof.
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