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Abstract 
 
Sylvester matrices play an important role in commutative algebra. We use the coefficients of the 
polynomials over finite fields to define Sylvester rhotrix. Further, we study the properties of Sylvester 
rhotrix. 
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1. INTRODUCTION 
 
The concept of rhotrix is introduced by Ajibade in 2003, see [2]. A 3×3–dimensional rhotrix is defined 
in some way, between 2×2–dimensional and 3×3–dimensional matricesas shown below; 
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a
R   

where edcba ,,,,  are real numbers. Here cRh )( 3 is called the heart of rhotrix 3R . In [2], the 
following operations of addition and scalar multiplication are discussed; 

If ,3

k
jhg

f
Q   is another 3-dimensional rhotrix, then the addition of two rhotrices is defined 
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Let   be any real number, then the scalar multiplication of a rhotrix 3R  by  is defined as 
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There are two types of multiplication methods of rhotrices discussed in [2] and [13]. The heart oriented 
multiplication of rhotrices is discussed in [2] as  
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The row-column multiplication of rhotrices as discussed in [13] is given below; 
 
Mohammed et al. [10] discussed an algorithm of heart oriented multiplication method of rhotricesfor 

computing machines and also generalized the heart oriented multiplication of 3-dimensional rhotrices 
to n-dimensional rhotrices in [9]. 
 
The row-column multiplication of high dimension rhotricesis discussed by Saini in [14] as follows: 
Consider a n -dimensional rhotrix 
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where   2/1 nt and denote it as lkijn caP ,  with tji ...,,2,1,  and 1...,,2,1,  tkl . 

Then the multiplication of two rhotrices nP  and nQ  is defined as follows: 
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Sani [15] introduced the rhotrix representation in the form of coupled matrices.An n-dimensional 
rhotrix nR can be written in the form of coupled matrices as follows: 

,, 1 ttn BAR where 
2

1


nt . 

This representation of rhotrix in the form of coupled matrices attracts the researchers of cryptography 
to use the said coupled matrices to increase the security of the cryptosystems, see [5, 21, 25, 26]. 
Rhotrices over finite fields were discussed by Tudunkaya et al. in [30]. The investigations of 
rhotricesover matrix theory and polynomials ring theory were discussed in [6, 7, 29]. The extended 
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heart oriented method for rhotrix multiplication was given by Mohammed [9]. Algebra and analysis of 
rhotrices is discussed in the literature, see [1, 2, 11, 12, 13, 14, 16-28, 30]. 
 
The well known structure of Sylvester matrix is used in commutative algebra, see [3, 4, 8]. Now firstly, 
we recall the definition of the Sylvester matrix then we define the Sylvester rhotrix. Further, in section 
2 and 3, we study the properties of Sylvester rhotrix. 
 
Definition 1.1Let 

,)0(;...)( 01
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be two non-constant univariate polynomials of degree m  and n  where the coefficients 

),...,2,1( mipi   and ),...,2,1( njq j   are the elements of the finite field kF2
. Then the 

Sylvester matrix (x)),(x)(syl=M qp of order n)+(m  is given by 

.

....00
........
0.0..

......
0...0
0.0..

M

03

01

04

01

01
































qq

qqq
pp

ppp
ppp

nn

m

mm

 

Definition 1.2Let 
,)( 01

2
2 pxpxpxp   

,)( 01 qxqxq   

,)( 01 rxrxr   

.)( 01 sxsxs   

Then5-dimensional Sylvester rhotrix 235 , BAS   is defined as 
 
 
 
 
 
 
 

 
where  1,02,1,0,  jandiqp ji and  1,0,, mlsr ml are elements of the finite field of 
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Remark 1Two coupled matrices of 5S  are 
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Definition 1.3Let nnn BAS ,112   be a rhotrix of dimension ( 12 n ), then the determinant (det) 

of 12 nS is given by 
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Remark 2The determinant of a Sylvester rhotrix is known as its Resultant (Res). 
Definition 1.4 Let nnn BAS ,112   , then the rank of 12 nS is given by 

rank 12nS rank  )( 1nA rank .)( nB  
 
2. PROPERTIES OF SYLVESTER RHOTRICES OVER ࡲ૛૛  
In this section, we discuss some properties of Sylvester rhotrices over the finite field 22F . 

Theorem 2.1 Let 235 , BAS  be a Sylvester rhotrix of dimension 5 whose coupled matrices are 

defined as ))(,)((3 xqxpsylA  and ))(,)((2 xsxrsylB  , where 

,1=(x) 22  xxp   
,1)(  xxq   

,)( 2 xxr   
 xxs )(  

and  is the root of irreducible polynomial 1)( 2  xxxg  in the extension field of GF  22 . 
Then,  
(i) determinant of 05 S if either )(,)( xqxp  or )(,)( xsxr have non-constant common  

divisor and determinant of 05 S  otherwise. 

(ii) degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr sum of degrees of  

)(,)(,)( xrxqxp  and )(xs   rank of .5S  

Proof :( i) for given )(,)(,)( xrxqxp and )(xs ,the corresponding coefficients matrices are 
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This implies that,  
2

235 )(det)(det)(det  BAS .                                                 (2.2) 
Therefore, the results (2.1) and (2.2) conclude the theorem. 
 
(ii) From part (i) degree of 0))(,)((gcd xqxp  and degree of 0))(,)((gcd xsxr . 

Also, rank of 33 A and rank of .22 B  

Therefore, rank of 5S = rank of 3A  + rank of .52 B  
Now, 
degree of ))(,)((gcd xqxp degree of .0)(,)((gcd xsxr   (2.3) 
Also, 
sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of .05 S   (2.4) 
Using (2.3) and (2.4), we have 
degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr  

sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of 5S . 
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Theorem 2.2 Let 347 , BAS   be a Sylvester rhotrix of dimension 7  whose coupled matrices are 

defined as ))(,)((4 xqxpsylA  and ))(,)((3 xsxrsylB  ,where 

,1)( 23  xxxp   
,)(  xxq  

,)( 22   xxxr  
xxs )(  

and  is the root of irreducible polynomial 1)( 2  xxxp  in the extension field of GF  22 . 
Then, 
(i) det of 07 S if either )(,)( xqxp  or )(,)( xsxr have non constant common divisor and 

07 S  otherwise. 

(ii) degree of ))(,)((gcd xqxp  degree of ))(,)((gcd xsxr sum of degrees of  

)(,)(,)( xrxqxp  and )(xs  rank of .7S  
 
Proof: (i)For given )(,)(,)( xrxqxp and )(xs , the corresponding coefficients matrices are 
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This implies that, 
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 It follows from (2.5) and (2.6) that )(,)( xqxp  or )(,)( xsxr  have nonon-constant common divisor 

and )(det 7S is non –zero. 
 
(ii) From part (i) degree of 0))(,)((gcd xqxp  and degree of 0))(,)((gcd xsxr . 

Also, rank of 44 A and rank of .33 B  

Therefore, rank of 7S  rank of 4A  + rank of 3B = .7  

Now, degree of ))(,)((gcd xqxp  degree of .0))(,)((gcd xsxr  
Also, 
Sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of .05 S  
Hence, 
Degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr  

Sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of 7S . 
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Theorem 2.3 Let 347 , BAS   be a Sylvester rhotrix of dimension 7  whose coupled matrices are 

defined as ))(,)((4 xqxpsylA  and ))(,)((3 xsxrsylB  ,where 

,1)( 22  xxxp   

  xxxq 22)(  

,)( 22   xxxr  
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and  is the root of irreducible polynomial 1)( 2  xxxp  in the extension field of GF  22 . 
Then , 
(i) det of 07 S if either )(,)( xqxp  or )(,)( xsxr have non constant common divisor and det 

07 S  otherwise. 

(ii) Degree of ))(,)((gcd xqxp  degree of ))(,)((gcd xsxr sum of degrees of  

)(,)(,)( xrxqxp  and )(xs  rank of .7S  
 
Proof: (i) For given )(,)(,)( xrxqxp and )(xs , the corresponding coefficients matrices are 
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This implies that, 
.00)(det)(det)(det 347  BAS (2.8) 

It follows from (2.7) and (2.8) that )(,)( xqxp  or )(,)( xsxr have non-constant common divisor 

and )(det 7S is zero. 
 
(ii) From part (i) degree of 2))(,)((gcd xqxp  and degree of 0))(,)((gcd xsxr . 

Also, rank of 24 A and rank of .33 B  

Therefore, rank of 7S  rank of 4A  + rank of 3B = 5 

Now, degree of ))(,)((gcd xqxp  degree of .2))(,)((gcd xsxr  
Also, 
sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of .2577 S  
Hence, 
degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr  
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sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of 7S . 
 
 
3. PROPERTIES OF SYLVESTER RHOTRICES OVER 32F  

In this section we use the appropriate polynomials for the Sylvester rhotrices over the finite field 32
F . 

Further, we discuss some properties of Sylvester rhotrices. 

Theorem 3.1 Let 235 , BAS  be a Sylvester rhotrix of dimension 5 whose coupled matrices are 

defined as ))(,)((3 xqxpsylA  and ))(,)((2 xsxrsylB  ,where 
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1)( 3  xxr   
and 

24)(   xxs . 

The coefficients of )(,)(,)( xrxqxp and )(xs are defined over GF  32 and    is the root of 

irreducible polynomial 1)( 3  xxxg  in the extension fieldof GF  32 . Then, 

(i) determinant of 05 S  if either )(,)( xqxp  or )(,)( xsxr have common divisor and  

determinant of 05 S  otherwise. 

(ii) degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr sum of degrees of  

)(,)(,)( xrxqxp  and )(xs   rank of .5S  
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It follows from (3.1) and (3.2) that )(,)( xqxp  or )(,)( xsxr have no non-constant common divisor 

and )(det 5S  is non –zero. 
 
(ii) From part (i) degree of 0))(,)((gcd xqxp  and degree of 0))(,)((gcd xsxr . 

Also,    rank of 33 A and rank of .22 B  

Therefore,   rank of 5S = rank of 3A  + rank of .52 B  
Now, 
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degree of ))(,)((gcd xqxp degree of .0)(,)((gcd xsxr  
Also, 

sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of .05 S  
Hence, 
degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr  

Sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of 5S . 
 

Theorem 3.2 Let 347 , BAS   be a Sylvester rhotrix of dimension 7  whose coupled matrices are 

defined as ))(,)((4 xqxpsylA  and ))(,)((3 xsxrsylB  , where 

,)( 522   xxxp  

,1)( 22  xxxq   

,)( 226   xxr  
xxs )(  

and is the root of irreducible polynomial 1)( 3  xxxg  in the extension field of GF  32 . 
Then, 
(i) determinant of 07 S if either )(,)( xqxp  or )(,)( xsxr have non-constant common  

divisor and det 07 S  otherwise. 

(ii) degree of ))(,)((gcd xqxp  degree of ))(,)((gcd xsxr  sum of degrees of  

)(,)(,)( xrxqxp  and )(xs  rank of .7S  

Proof:(i) For given )(,)(,)( xrxqxp and )(xs , the corresponding coefficients matrices are 
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347  BAS (3.4) 

It is clear from (3.3)and (3.4)that for non-constant divisor of either )(,)( xqxp  or )(,)( xsxr the 

)(det 7S  is zero. 
 
(ii) From part (i) degree of 1))(,)((gcd xqxp  and degree of 0))(,)((gcd xsxr . 

Also,    rank of 34 A and rank of .33 B  

Therefore,   rank of 7S  rank of 4A  + rank of 3B = .6  

degree of ))(,)((gcd xqxp  degree of .1))(,)((gcd xsxr  
Also, 

sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of .15 S  
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Hence, 
degree of ))(,)((gcd xqxp degree of ))(,)((gcd xsxr  

Sum of degrees of )(,)(,)( xrxqxp  and )(xs rank of 7S . 
 
Theorem 3.3Let 347 , BAS  be a Sylvester rhetoric of dimension 7 over GF ( 32 ) whose coupled 

matrices are defined as ))(,)((4 xqxpsylA  and ))(,)((3 xsxrsylB  , where 
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))()()()()(( 121122122111
2
1

1
2

2
2

2
2 ttdcba   ,(3.5) 

where 0)( ip   for 21  i  , 0)( jq   for 21  j , 0)( ur  for 21  u and 

0)( vts  for 1v . 

Proof: Since the polynomials )(,)(,)( xrxqxp and )(xs  are over )2GF( 3 . 
Let 

 0
5

12 ,, aaa  6 , 

.0,1
,,0,
,,0,
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2
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6
2

4
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2
2







dd
ccc
bbb





 

Therefore, given polynomials become 
,=(x) 652   xxp  

,)( 422   xxq  

,)( 226   xxr  
xxs )( , 

where   is the root of irreducible polynomial 1)( 3  xxxg  in the extension field of GF  32 . 

Clearly, the roots of )(xp , )(xq  and )(xr  are respectively 1 and 5 , 2 and 2 , 5 and 5 .The 
root of )(xs is 0. 
Therefore, 

5
2

5
1

2
2

2
1

5
21 ,,,,,1    and 01 t . 

 
 
Now, 

))()()()()(( 121122122111
2

1
1
2

2
2

2
2 ttdcba    

)0)(0())()(1()1(1)()()( 55252522216222    
5254      (3.6) 

We know that, Res ( ))(),((Re))(),((Re))(),(,)(),( xsxrsxqxpsxsxrxqxp  , where  

Res ( ),det())(),(,)(),( 7Sxsxrxqxp   Res )det())(),(( 4Axqxp  and  

Res )det())(),(( 3Bxsxr  . 
Since, 
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Clearly, det ,)( 3
4 A det 2

3 )( B . 

Therefore, Res( )(),(( xqxp )= 3  and Res( )(),( xsxr )= 2  
which gives  
Res ( ))(),(,)(),( xsxrxqxp = 3 . 2 = 5 .         (3.7) 
It follows from (3.6) and (3.7) that 
Res ( ))(),(,)(),( xsxrxqxp  

= ))()()()()(( 121122122111
2
1

1
2

2
2

2
2 ttdcba   . 

 
4. CONCLUSION 
In this paper we defined the Sylvester rhotrix. The elements in the rhotricesare from the finite fields GF
 22  and GF  32 . Using such rhotrices, we have proved some properties of Sylvester rhotrices over 

the finite fields GF  22  and GF  32 . 
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