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ABSTRACT  
 

The present   research paper investigates the Banach summability of Fourier series, focusing on conditions 
under which the Fourier series of a function converges in the Banach space setting. We explore the key 
concepts, including the Banach summability method, its relation to traditional summability criteria, and its 
impact on the convergence of Fourier series. Through examples and theoretical results, the paper clarifies 
the role of Banach summability in ensuring improved convergence for specific classes of functions.  
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1. Introduction, Preliminaries & Motivation 
 

In the realm of mathematical analysis, Banach summability emerges as the centre of attraction for concept 
that enriches our understanding of series. It surpass the limitations of classical convergence, inviting us to 

explore the intricate landscapes of series that may diverge or converge only conditionally. This elegant 
framework, rooted in analysis, empowers mathematicians to assign meaningful limits to these series, 

unveiling the hidden harmonies within seemingly chaotic expressions. 
 
Equally enchanting is the world of Fourier series, where periodic functions are elegantly expressed as 
infinite sums of sines and cosines. This powerful tool serves as a bridge between abstract theory and 

practical application, finding resonance in diverse fields such as signal processing, physics, and 
engineering. Yet, the journey of Fourier series is not without its challenges; functions with discontinuities 
often thwart traditional convergence, prompting a quest for deeper understanding. 
 
Herein lies the synergy between Banach summability and Fourier series. By employing the principles of 
Banach summability, we can navigate the complexities of Fourier series, granting us insight into their 
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n 



behavior even when conventional convergence falters. This interplay not only enhances our theoretical 
knowledge but also equips us with versatile tools to tackle real-world problems. 
 

The theory of summability was first discovered by great mathematician Godfrey Harold Hardy [1].  He 
was worked on the development the theory of divergent theory (1970). His famous & evergreen book 

“Divergent Series “influenced   many great mathematicians like Stefan Banach [2], Salomor Bochaner [3], 
Ram Chandran [4], Shyam Lal Singh [5]. The groundbreaking work was done on Banach limits & Banach 

summability by Stefan Banach [6] revolutionized the field, providing a rigorous framework for studying 
convergence & divergence of a series. Later S.K Paikray et al. [7] has initiated absolute indexed summability 
factor of an infinite series using quasi monotone sequence., R. K Jati etal [8] have adopted absolute indexed 
matrix summability of an infinite series.   Mishra & Mishra [8] G. D. Dikshit [9], L. McFadden [10], T. Pati 
[11] have been extending different methods of absolute summability methods & Fourier Series. 

 
Definition 1.1. 

Let ∑ �� be an infinite series and let ��  be the sequence of partial sums.Let the sequence { ��(n)} 
defined by  

��(n)=
�

�
∑ ����

���
���                                                                                                                                            (1.1)                                                                                

then  we say     t�(n) is to be the r-th element of the Banach transformed sequence. 
 

If        Lim
�→�

t� (n) = s ,    a definite number   uniformly for n∈N ,                                                                   (1.2)                                               

     then 
 �� ���  

∑ �� is said to be Banach summable to s[1]. Further, if 

 
∑{

��(�) − ����(�)
}
 <uniformly for n N                                                                                             (1.3) 

     
then, the series ∑ ��

 said to be absolutely Banach summable or simply  

 Again, for k 1, if 
 

    � ����

�

���

 |��(�) − ����(�)| < ∞  ,    uniformly for n ∈ N� �   .       � − 1 = 0                                            (1.4) 

                                                                                         .                                                                                                                                                                                                
Then, we shall say that ∑

��
     absolutely Banach summable of index k .  

 
Definition 1.2.    
Big O notation provides an upper bound on the growth rate of a function.  If we write   f(n) =O(g(n)), it means 
that there exists a positive constant C & a value n such that for all n>n0 

 
                          |�(�)|≤C|�(�)| 

 
Example: Let f(n)=3n2+2n+1, We can say that: 

                              f(n)=O(n2) 
because for sufficiently large n, 3n2+2n+1 is less than or equal to Cn2 for some constant C. 
 
Small o notation describes a function that grows slower than another function. 

If f(n)=o(g(n)), 

It means that    Lim
�→�

�(�)

�(�)
=1 

His indicates that f(n) becomes insignificant relative to g(n) as   n →∞ 
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Example: If f(n)=n  &  g(n)=n2  hen f(n)=o(g(n)) because n   becomes insignificant compared to n2  as n 
increases. 
 

Let f(t) be a 2-periodic function which is L-integrable in  ,  . then the series 
 

∑ ��
�
��� (�) =

��

�
  ∑ (��

�
��� ����� + �������)              


 is called the Fourier series of f ( t)  where 
           
 

       

��   =
�

�
∫ �(�)

�

��
dt 

�� =
�

� 
∫ �(�)

�

��
������� 

 

�� =
�

� 
∫ �(�)

�

��
����� ⎦

⎥
⎥
⎥
⎤

                                                       (1.6) 

 
We denote 
 

 

t  
�

�
{�(� + �) + �(� − �)} 

 
2.  Know Result On approaching with   absolute Banach  summability of a Fourier  
 
Series, Dikshit, Mishra   e tal prove the following theorem 
Theorem 1.  Let  �≥1  & let  the function qn   the following conditions 

(i)∫ ��
�

�
(t)dt=1 

(ii) for 0<�<1, ��(t) is increasing for0<t<1. 

(iii) 
��(�)

������ ∈L(0,1)   with � = �. If ��(t) ∈ ��(0, ᴨ), then at t=x, the Fourier series of f  is summable by the 

method  ��(��
�|. 

  

Theorem 2. If  ø(t) is a bonded variation   function in the interval (0,π) ,then the Fourier series  ∑ ��(�) of  f(t 

) is absolute   Banach summable. 
  

Theorem-3. If    {��}   non negative sequence of numbers such that     ∑
��

�
≤∞ &  if ∫

�(�)

�

�

�
 ≤∞,then the factor 

Fourier Series     ∑ ���� (�) is absolute Banach summable. 

 
In the view of above, we shall generalize absolute indexed summability of Fourier series. 
 
3. MAIN RESULT 
  
 Theorem 3. If∅(t) is a bonded variation   function in the interval (0,π) ,then the Fourier series  ∑

��
 (x) of  

f(t) is absolute  indexed   Banach summability. 
 
 We need the following lemma to establish the above   theorem. 
Lemma1. Let   

t�(n) defined by    (1.1). then 

      ��(n) -����(�) =
��

�(���)
∑ �����     

���
���                                                    (3.1) 
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Lemma2.     Let {�� } be a positive non-decreasing sequence of real numbers &let �=�
�

�
�, then for all   

a,b�N 

                ∑ ���������
���     = �(��) 

 
                  ∑ ���������

��� =  �(��)                             (3.2) 

Lemma3.   Let {��}   non negative sequence of numbers such that  ∑
��

�
<∞, then  {��}    is monotonically 

decreasing. 

Proof of the theorem: 

Since from definition of Fourier series  ��(x)=
�

�
∫ �(�)�������

�

�
 

                                                                                 =
�

��
∫ �(�)�������     

�

�
 for all    n=1,2,  3,…. 

 

         For the series   � ��(x)  =
�

�
, we have by from given Lemma1 

    �  ����|��(�) − ����(�)|�= ∑ �����
��� �

�

�(���)
∑ �����(�)

�
��� �

�

    

 
 
 

                                                 = (
�

�
)� ∑

�

�(���)�
�
��� �∑ ∫

�

���
���(� + �)��(�)

�

�
���
��� � � 

 
�����   ø(t) is a bonded variation   function in the interval (0,π) 

                                                                                             ⟹ ∫ �ø(�)
�

�
<∞ 

                                                                                            ⟹ ∑ �����
��� |��(�) − ����(�)|<∞ is uniformly in n. 

 

         Again, if for all 0<t< ,     ∑
�

�(���)�
�
��� �∑ ∫

�

���
���(� + �)

�

�
���
��� ��K   < ∞ is uniformly for all t 

 
 Now  

∑
�

�(���)�
�
��� �∑

�

���

�
��� ���(� + �)�� k + ∑

�

�(���)�
�
����� �∑ ∫

�

���
���(� + �)

�

�
���
��� �� K 

                                                      =Σ�+Σ� 

Where Σ�=∑
�

�(���)�
�
��� �∑

�

���

�
��� ���(� + �)�� K      

                    ≤ ∑
�

�(���)�
�
��� �∑

�

���

�
��� (� + �)�� K                 (⸫ sin≤x) 

                      =  ��  ∑
�

�(����
�
��� |∑ ��

��� | K 

                     = �� ∑
�

�(���)�
�
���

  (
�(���)

�

�
) 

                         

                     =
��

��
∑ �����

���   

                      = 
��

�� O(��) 

                      = O(1) 

         

              Σ�= ∑
�

�(���)�
�
����� �∑

�

���

�
��� ���(� + �)��K 

                      =  ∑
�

�(���)�
�
����� �∑

�

���

�
��� (� + �)�� 

 

                        = O(��)�
�

���
�

�
|∑ ���(� + �)��

��� |k 
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                                   ≤ O(��)∑
����

(���)�
�
�����  (� + �)� 

                        ≤ O(��)∑
�

(���)���
�
�����  

                         ≤ O(��) (���) 
                         =O(1) 

          
           ∴ Σ <∞ & uniformly in n 
        

Hence   An(x) is absolute Banach indexed summable.  
This proves the theorem. 
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