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Abstract

This paper tackles the problem of static deformation of an orthotropic elastic layer of uniform
thickness overline an orthotropic elastic half-space. This is caused by a very long vertical strike-
slip fault in the layer with rigid surface and this problem is solved analytically. The effect of ratio
of width and depth of the faults has been studied for parabolic and linear slip profiles by varying
the horizontal dimensionless displacements and by depicting contour maps for the stresses.
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1. INTRODUCTION

To study the deformation field around the fault, a static deformation model in anti-plane
configuration is generally used. Many researchers have obtained the analytical solutions for
displacements and stresses in isotropic and anisotropic elastic medium due to strike slip and dip-slip
dislocation with uniform slip. In case of long faults, the use of two-dimensional approximation is
justified and consequently the algebra is simplified to a great extent and one gets a closed form
analytical solutions.

Okada (1992) [9] obtained a complete set of analytical solutions for rectangular faults with uniform
slip in homogeneous elastic half space. A number of solutions are also available in isotropic elastic
layered media but these are generally assumed to be a constant slip along the fault. Dziewonski and

Anderson (1981) [4] have established that the upper part of the earth is orthotropic instead of
isotropic which has proved to be a better approximation to study the deformation field due to fault.
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Garg et al (1996) [5] obtained the integral representation of two-dimensional seismic sources carrying
the anti-plane strain deformation of an orthotropic elastic medium. To study the coseismic
deformation a two-dimensional fault model is very useful. The strike-slip faults are typically steep or
vertical and many strike-slip faults are idealized as being vertical cuts going presumably, all the way
to core-mantle boundary. In truth, the geometry of apparently vertical strike-slip faults is quite
variable with depth. Elastic deformability combined with sample asymmetry, i.e., when there are
uniform changes in the shear stress, non-uniform slip can be caused by the mechanical environment
of all the non-identical points on the surface. Uniform slip is not ensured even if a sample has perfect
symmetry.

Ruina et al. (1986) [10] studied that uniform slip could be unstable to small spatial disturbance which
leads to spatially non-uniform slip. In a uniform isotropic elastic half-space, Singh et al (1994) [11]
derived the closed form analytical expressions for displacements due to non-uniform slip along a long
vertical strike-slip and dip-slip fault.

Madan et al. (2005) [7] have obtained static deformation field due to various non-uniform slip
profiles along a long strike-slip fault in an orthotropic elastic half-space.

Chugh et al. (2011)[2] obtained the closed form analytical expression for the deformation field due to
a non-uniform slip along the strike-slip fault situated in an orthotropic elastic layer lying over an
orthotropic elastic half-space. They considered the surface as a traction free surface. It has been
observed that the earthquake source lies in the Paleozoic sedimentary rocks in Enola, Arkansas, USA,
(Crampin, 1994 [3]). Such sedimentary rocks may be represented by layer and the bottom of the layer
may be taken as half-space. In engineering, the elastic layer represents an elastic plate whereas in
geophysics it represents a lithosphere.

Amano (1981) [1] discussed that since the earth is surrounded by a free surface except for the
influence of the atmosphere, the phenomenon resulting in the interior of the earth must be processes
closely connected with some state of internal stress. Modeling of deformation and stress due to fault
motion with stress free boundary does not include crustal rigidity of layering and lateral variations.
Seismic surveys and geological data indicate that the rigidity of the surface is likely to affect the
magnitude and pattern of deformation and stress. In the present paper we have considered the
surface of the orthotropic elastic layer as rigid lying over an orthotropic elastic half-space. The closed
form analytical expressions for the stresses and displacements at the surface are obtained for
parabolic and linear slip profiles. To study the deformation field due to non-uniform slip the width
and depth plays an important role. In the present problem at different values of width-depth (w/d)
ratio, the variations of displacement and stresses are depicted graphically. Contour maps showing the
stress distribution due to linear and parabolic slips are also presented.

2. LINE SOURCE IN THE LAYER

We consider a vertical strike-slip fault with non-uniform slip situated in orthotropic elastic layer lying
over an orthotropic elastic half space with rigid surface at z=0 where the displacement is zero.We
consider d as depth of the fault and was the width of the fault. Let H be the width of orthotropic
elastic layer. The problem is two-dimensional anti-plane strain problem in yz-plane by considering z
axis vertically downwards. As given in Garg et al (1996)when line source lies in the layer, the suitable
expressions for the horizontal displacements u,parallel to the line sourceto x-axis, passing through the
points {fa, f5Jin the layer are:

[158]
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Figure 1: Geometry of a long vertical strike-slip fault (@ and © indicate the displacements in the
positive negative y-direction respectively)

u® = Uy + foo [{A1 sin k(y _ ﬁz) +B, cosk(y _BZ)}e—alkz
-0 + {Cl sin k(y - ﬁz) + D, cos k(y — ﬁz)}ealkz]dk

[1
ul® = [* {4, sink(y — B,) + B, cos k(y — B,)}e™%** dk 2]
where
u,_\:f;c [Ap sink(y — f2) + By cos k{y — ;)] e~ ™15 Fal gk [3]

The superscript (1) is used to indicate the layer and (Il) for the half-space. The constants
4,.4,. B, B, C, &D, are to be determined from the boundary condition:

The bounding surface z=0 is a horizontal plane and is a plane of elastic symmetry. It is further
assumed that the bounding plane z=0is rigid, so that
wlz=01=10

[4a]
At the interface when z=H is welded (perfectly bounded), the boundary conditions are that all the
components of the displacement and stresses are continuous across the surface at z=H, i.e.

ulz=H )=ulz =H"*) [4b]
T3(z=H")=13(z=H") [4c]
Here 7,5 = cazz—z,rm = CZ_Z [5]

represents the shear stresses in an orthotropic elastic medium,
where ce® = ¢y and ¢ = o35 [6]

The values of = and ¢ depend upon the elastic constants. We assume that @ and ¢ are positive real
numbers.

By using boundary conditions [4a]-[4c] in Egs.[1] and [2], we obtain the following values of elastic
constants.

[159]
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A, = _A{)SZ(e—kalm + Sle—kal(ZH—ﬁ3))

B, = _Bész(e—ka1ﬁ3 _ Sle—kal(ZH—ﬁ3))

C, = A{)SZSl(e_k(ZH_ﬁ3) + e—k(2H+ﬁ3))

D, = B(I)SZSI(e—k(2H+[33)_e—k(2H—l33))
Ay = ALS, (1 + S))(ek@hs — e~karfs)g—klar—ar)H
B, = BLS, (1 + S;) (e *a1Fs — gtkaifs)g—k(a-az)H

[7]
where
g = am=ca — 1
crag+cpay’ T2 1-5,e—2Hkaz
(8]

The substitution of the values of Aj.A; ByBq, €y wndD; from Eq. [7] in Egs. [1] and [2] gives the
integral expressions for the displacements. These integrals are then evaluated analytically to obtain
the following expressions:

ul = —=B1)Ao+ailz=B31Bo _ v cn {(y—[?z)A{)+a1(2nH+[?3+z)B(I)} ® n{—(y—ﬁz)A{,+a1(2nH—ﬁ3+z)B(I)
O-pr+@lz=pa? S0 L Gmp) e (wrniipan)’ ) ST UG- (w2t -pat2))”
(y—B2)ab+ay @nH+Bs-2)B) (y—ﬁz)Aé+a1(2nH—ﬁ3—z)Bé}
(Y—ﬁ2)2+(0!1(2n1'1+l33—2))2 (y—ﬁ2)2+(0!1(2n1'1—l33—2))2
(9]
I [ I [
= _¥=* (146 )" {(Y‘ﬁz)Ao—(al(ZnH+l33+H)+a2(Z—H))Bo+(Y—ﬁz)Ao—(al(ZnH—l?3+H)+0!2(Z—H))Bo}
u n=o( 1S (y—B2)2+(ay (2nH+B3+H)+az(z—H) )’ (v—B2)2+(a1(2nH—B3+H) +az (z—H))?
[10]

From the Egs. [9] and [10] following Maryuma (1966) [8] and Garg et al (1996) [5] we obtain the
following expressions for displacements for perfect contact due to very long vertical strike slip fault
with displacement discontinuity b(h) parallel to the fault in the x-direction situated in the layer at a
point (0, h) as:

a, S y y
=2 [ pmy ) s . >
‘=) s e

N Y
Y z
y2 + (@, (2nH £ +2))

n=1

_ 4 S| dn [11]
y2 + (a,(2nH — B; — 7))

for0=z=Hand forz>=H

wl =2 [Fb() [Sieo@ + 557 | . * . f

y2+(ay(2nH+B3+H) +ay (z—H))2 y2+(ay(2nH-B3+H) +ay (z—H))2

[12]

where L denotes the fault stresses.

Let the parabolic and linear slip profiles along the fault be varying accordingly as:

[160]
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Parabolic slip: b(h) = b, (l - h—z)

d2
Linear slip: b(h) = b, (l - S)

[13]

Where0<h<w<d

By substituting the value of b(h) from Eq. [13] for parabolic and linear slips along vertical stress-slip
fault in orthotropic elastic medium in the Eq. [11]—-[12] and then integrating over the limits 0 < h <
wand using Eq. [5],we obtained the following closed-form expressions for the dimensionless
displacements and stresses at any point (y, z).

Parabolic slip

for0<z=H

ul = e, [Zw 051 {0_’1 (l +— — (Zny + Z)Z) (ta -1 w —tan~1 %) + 0.’1Y(2n}/ +
Y2+(@2ny+Z+R)%a? _ Y2 2 1 @ny-Z+R)a; -1 @ny—2)as)
Z)log( Y2+(2ny+z)2a? ) % (l + a? (Zny Z) ) (tan Y tan Y )

2 _ 2,2 2 N
aly(Zny + Z)log (M)} + Zﬁ=1S{l {0-'1 (l + :_% _ (Zny + Z)Z) (tan_l (2ny+Z-R)aq _

Y2+(2ny-2z)2%a? Y

-1 (2 Z Y2+(2 Z-R)2a?
tan™! @) —a,Y(2ny + Z)log (u) +

Y2+(2ny+2)%a?
(l +——(2ny — Z)Z) ( nt —(Zny_i_R)al - tan~! —(Zny;Z)al) +
alY(Zny -
Y2+(2ny-Z-R)?a?
Z)log ( Y2+(2ny-z)2a? )}] [14]

and forz = H

Z(l+5)5 {a < YZ [0-’1(271)""2)"'0-’2(2_)’)]2)

I —
2710:1

0-'1 af

x| tan™t

2y + 2+ Ry + @ (Z—7) st B+ Z =Ry + ay(Z — V))
7 Y

Y{al(Zny + Z) + OIZ(Z _ }’)} Y24+ [0_’1(271}’ +7 — R) +a, (Z - y)]Z

— o g<y2+[al(Zny+Z+R)+0-’2(Z_}/)]2>

+ ZY}

where Y= J ,Z=2 > *y—— and R— is the width-depth ratio of the fault.

[15]

[161]
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bocy o, [ Y? @Cny + 2Da, @Cny +Z +R)a,
= 212N snla?y (1+— — (2ny +2)? -
f12 2 nz_o 1% a? (@ny +2) Y2+ (2ny +Z)2a? Y2+ (2ny +Z + R)%*a?

2y 2ny +Z+R)a 2ny + 7Z)a

L <mn-1 @y +Z+Ra M) e V?RCny
a, Y Y

+ 7 dny + 2Z +R
) (Y2+ (2ny + Z + R)?aZ) (Y2 + (2ny + Z)?a)

Y2+ (@2ny +Z +R)*a?
+ (2na1y+Z)l0g< (2ny ) a’1>

Y2+ (2ny + 2)2a?
2

__ +7)2 -
a? ey +2) ><Y2 +@ny —Z)%a; Y2+ (2ny —Z+R)?a3
oy (2ny —Z +R)ay @ny - Doy

B afY<l N Y @Cny - Da, (ny —Z+R)a, )

Y Y
dny —2Z +R
Y2+ (2ny —Z — R)2a?)(Y2 + (2ny + Z)%zf))
Y2+ (2ny — Z — R)?a?
Y2+ (2ny — 7)%a? )}

= y? 2ny + 7
+ZS{‘ {afY<l+?—(2ny+ Z)2>< (2ny )%
1

Y2+ 2ny + 2)%a?
@Cny +Z —-R)a,
Y2+ (2ny + Z — R)2a?
2Y< @y +Z-R)ay _, @ny + D)ay
tan!——m8M8M8 ™ ——— tan!————

+_
ay Y Y

a

+a,Y2R(2ny — 2) <

— a;(2ny — Z)log <

n=1

>+a1Y2R(2ny

v 7 dny +27Z — R

) (Y2 + (2ny +Z — R)2a?)(Y2 + (2ny + Z)2a?)

Y2+ (2ny + Z — R)?*a?
+ (2nayy + Z)log< Y2 + (2ny +Z)2af
Y2 Cny — 2Da, (Cny —Z -R)a,
_ 2 r _ 72 _
a’1Y <l + af (Zny Z) ) <Y2 + (Zny —Z)Zaf Y2 + (Zny —7 - R)Zaf

2Y< L (Cny —Z-R)a, L @ny - Z)a1>

tan !\ —mmm8——— — tan 1 —

+_
ay Y Y

2 —
+ a,Y R(Zn}/ Z) <(Y2 + (271}/ —7— R)Za%)(yz + (271}/ +Z)2af)

Y?2+ (2ny — Z —R)%a?
Y2+ (2ny — 2)%a?

4ny —2Z —R )

— oy (2ny — 2)log < [16]

[162]
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T13

 bygy isn (147~ ony s 207 1 1
T |47 az YZ+@ny +Z+R2aZ Y2+ (ny +2)%a?
n=

@Cny +Z+R)a, L @ny + Z)a1>
—_——tan ' — @ —0
Y Y
—a2@ny +2)2ny +Z+R) Y2+ (2ny + Z + R)*a?
+ Ylog

- 2@ny+ 2) <tan‘1

+2a?RY(2ny + Z
wikr@ny )<(Y2+(2ny+Z+R)2 o) (V2 + @y + 2)%af) v+ @y +2)a

Y2 , 1 1
- a1Y<l 2 eny = 2) ><Y2 +Qny —Z+R12a? Y2+ (2ny —Z)Zaf>
- 22y - 2) <tan‘1 Cry 22+ Ray o 20y = Z)“1>
y Y
2—a?@ny —Z2)(2ny —Z +R)
(Yz+ (Zny Z+R)2a?)(Y?+ (2ny — Z)Zaf)>

Y2+ (2ny — Z + R)*a?
— Ylog > 22
Y2+ (2ny — Z)%a

Y? 1 1
+ ZSl {al <l +—— (271}’ + Z) ><Y2 + (271.}/ +7— R)Zaf - Y2 + (271}/ + Z)Za%>

n=1
2ny +Z — R)a 2ny +Z)a
—-2@ny + 2) <tan‘1 % — tan?! %)

Y2 —a?@ny +2)(2ny +Z —R) vi Y2+ (2ny + Z — R)*a?
(V2 + @y + Z—R2Za®) (Y2 + @ny + 2)2a2) ) CI\T¥2 ¥ (2ny + 2)° 2

+2a?YR(2ny + Z) <

—2a?RY(2ny + 2) <

y? , 1 1
— a1Y <l =+ a_f - (Zn}/ - Z) ) <Y2 + (Zn}/ —7— R)Zaf - YZ + (Zn}/ — Z)Zaf>
2@y —2) <mn—1 @w-z-Ra M)
Y Y
—a2@ny —-2)(2ny —Z —R)
Y2+ (Zny Z —R)?af)(Y*+ (2ny — Z)Zaf)>

Y2+ (2ny — Z — R)?a?
— Ylog >
Y2+ (2ny — 2)%a?

—2a?YR(2ny + Z) <

[17]

Linear slip

for0=z<H

[163]
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2ny + Z + R)a 2ny + 2a
ul = [Z S" a,(1+2ny +2) <ta L @ 2% Ry tan‘l—( r+2) 1)
27m1 Y Y

Y Y2+ (2ny + Z + R)?a? (Cny —Z +R)a,
R — + — -1 - ‘-

> log < v+ @ny + 20 a,(1+2ny — Z) | tan %

_, 0, 2ny - Z)) Y Y2+ (@2ny —Z+R)*a?
Y Y2+ (2ny — 2)%2a?

299

- 2ny +Z — R)a 2ny + 2)a
+ZSI" {a’l(l—Zny—Z) <tan—1¥— tan™?! %)

Y Y2+ (2ny +Z —R)?a? _,@ny—Z-R)
_Elog< Yo+ Gny + D2 —a,(1-2ny — Z)| tan —
I al(Zny—Z)) Y o (Y2+(Q2ny —Z-R)*a}

tan — + > lo Yo+ Gny —2)°a [18]

and for z>H

[Z(l +5,)SD {al < a1(2n)’ +7) +a,(Z - )’)) 9 <tan‘1 @Cny +Z+ R)a, +a,(Z - y))

27w:1 a %
a,ny + 2) + a,(Z - y) @y +Z-Ra, +a,(Z—-7)
-\1- tan™!
o, y
a,Cny +2)+a,(Z —
—2[a;(2ny + 2) + &, (Z — 7] <tan‘1 1 (@ny )y o }’))

- ;log([al(Zny +Z+R)+ ay(Z —Y)I> +Y2)/ ([, @ny + Z = R) + a, (Z — y))?

N YZ)} [19]
T12
_cqaghy Z " < QCny + 2)a, 3 Cny +Z+R)a, )
= [ ST {a1(1+2ny+Z) Y2+ Gny + 2)%al  Vi+ (ny + Z+ R)la.?
_ yR (4ny +2Z +R) +1| Y2+ (2ny +Z + R)*a,?
)
Y2+ @ny +2)2a,2)(Y2+ 2ny + Z + R)?ay2) 2 Y2+ (2ny + Z)?%a,?
@Cny — 2)a, Cny —Z+wa,
—a,(L+2ny — Z -
0(1( ny ) <Y2 + (271}/ Z)Za1 Y2 + (Zny — 7+ R)2a12
V2R (4ny — 2Z +R) lI Y2+ (2ny —Z + R)?a,?
- )
07+ Cny =220 )(V2 + @y —Zz + R2a?) © 2 O\ Ve + @y —2)%a,?
S Cny + 2)a, Cny+Z-R)a, )
n — — —
+Z 51 {al(l 2ny —2) <Y2 + (ny + 2)2a,2 Y2+ (2ny +Z — R)?a,?
N (4ny +2Z — R) +l| Y2+ (2ny +Z — R)?a,?
R v 2a )2+ Gy +Z2=Rra?) T2\ v T @y + 22a
Cny — Da, Cny —Z-w)a,
— (1 —2ny +2) <Y2 + (2ny — Z)2a,? Yz (2ny —Z — R)?a,?
+y2R (4ny —2Z —R)
Y2+ @2ny — 2)2a,2)(Y2+ (2ny — Z — R)?a,?)
1, (Y2+(ny —Z — R)%a;?
+ —log (2ny Ve, [20]
2 Y2+ (2ny — Z)?%a,?

[164]
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_ bycy

1 1
Y2+ (2ny + Z + R)?a? TYz+ (ny +Z)2af>

( _,[(@ny +Z +R)a; L [(Cny + D)y
+ q| tan <+> - tan <#>

a?YR(Y? — a2(2ny + Z)(2ny + Z + R))
Y2+a?@ny +Z+R)))(Y?*+ a?(2ny + Z2)?)

1 1
— a? — —
a’1Y(l + 2ny Z) <Y2 + (Zny — 7+ R)Zaf Y2+ (Zny — Z)%zf)

_, (@ny —Z+R)a; L (Cny = Dy
+a | tan <+> — tan <#>

N a'fYR(Y2 —a?(2ny —2)@2ny —Z + R))
Y2+ aZ(2ny — Z + R)2)(Y2 + a?(2ny — Z)?)

- 1 1
n) 2 _ _ -
+ Z 51 {al YQ—2ny - 2) <Y2 +(2ny +Z —R)2a? Y2+ (2ny + Z)Zaf>

n=0

1 @ny +Z -R)ay . Cny + Da,
—a | tan <#> — tan <#>

a?YR(Y? - a?(2ny + Z)(2ny + Z —R))
Y2+ a2(2ny +Z — R)2)(Y2 + a? (2ny + Z)?)

1 1
+ 2 _ + —
Y= 2ny +2) <Y2 +(2ny —Z —R)2a? Y2+ (2ny — Z)%zf)

_, (@ny —Z —-R)a, _, (@ny = 2)a,
—a | tan <#> —tan <#>

a'fYR(Y2 —a?(2ny —2)@2ny - Z — R)) }

T —
B 2nay

[ sr {afY(l +2ny +27) <
0

n=

(Y2 +a2(ny — Z - R)A)(Y2 + a2(2ny — Z)?) [21]

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we study the effect of parabolic and linear slips. We consider Topaz to represent the
layer (medium 1) which is rare magnesia silicate material which usually forms in fractures and
cavities of igneous rocks and Olivine to represent half-space (medium I1) which is believed to be the
most common mineral in the earth’s subsurface. For medium | &; = 0,99, ¢; = 13,24 X 104 MPa as
given by Love (1944)[6]. For medium Il as given by Verma (1960) [12] &; = 0.9824, ¢, = 8.10 X 104
MPa.

The comparison of the horizontal dimensionless displacements in an orthotropic elastic layered half-
space due to parabolic and linear slip profiles for Z=0.5,1 and ¥ = 0.3 has been made at different
values of R (w/d ratio) in figures 2(a)- (b). From these figures it has been observed that in the vicinity
of the fault, as the ratio increases, there is a significant difference occuring in the displacements. The
boundary conditions [4c] have been verified from the figures that at surface the displacements are
zero for each slip profile. It is further observed that for sufficiently large depth the slip becomes
uniform and the corresponding results for displacements and stresses can be obtained as a particular
case obtained from our results.
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Figure 2: Variation of the horizontal dimensionless displacement in an orthotropic elastic layered
half-space at different width-depth ratio (R=0.15,0.25,0.45,0.65,0.85) form the upper edge of the fault
Y for (a) £ = 0.5,y = 0.5 for parabolic slip, (b) £ = 1.y = 0.5 for parabolic slip, (¢) £ = 0.3 ¥ = 0.5 for
linear slip, (d) £ = 1.9 = 0.5 for linear slip.

Contour maps of shear-stress 1, and t;zfor different slip profiles (parabolic and linear) have been
depicted in figures () — (h) at Width-Depth ratio R=0.45 and =0.5.
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Figure 2: (e) Contour map for Shear-Stress t,,due to parabolic slip with the horizontal distance Y at
R=0.45and y = 0.3, (f) Contour map for Shear-Stress t,; due to parabolic slip with the horizontal
distance Y at R=0.45 andy = 0.3., (g) Contour map for Shear-Stress t,, due to linear slip with the
horizontal distance Y at R=0.45 andy = 0.5., (h) Contour map for Shear-Stress 7,5 due to linear slip
with the horizontal distance Y at R=0.45 and ¥ = 0.3,
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