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1. INTRODUCTION 
Topology is the study of geometric properties that does not depend upon shape of the objects, but 
rather how the points are connected to each other. In fact, topology deals with those properties of the 
objects that remain invariant under the continuous transformation of a given map. In 1979, Rosenfeld 
[14] introduced the concept of Digital Topology. Digital topology is concerned with geometrical and 
topological properties of digital image. Basically, digital topology involves the concept of adjacency 
(surrounding). Digital topology also provides a mathematical basis for image processing operations 
in 2D and 3D digital images. In recent times there have been many developments such as [1-13] in 
digital topology.  
 
In topology, infinitely many points are considered in arbitrary small neighbourhood of a point, on the 
other hand, digital topology is concerned with finite number of points in a neighbourhood of a point. 
In fact, in digital topology neighbouring points are integers. Therefore, one can easily distinguish 
between general topology and digital topology by considering the neighbourhood of a point as 
shown in the folowing Figure 1. 
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Abstract 

In this paper, we prove some common fixed point theorems for expansive mappings in digital 
metric spaces.   
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General topology                                                      Digital topology 
 

                #N(p) = ∞   
                                                
      ε → 0                    
           
 
 
 
 
                                                                                                       #N(p) = 4 
 
 
Figure 1: Neighboorhood in General and Digital topology 
 
Digital image processing is a rapidly growing discipline in business, industry, medicine, 
environmental sciences and among many other fields. Digital image process involves the analysis of 
picture i.e., the regions of which it is composed of. A picture can be digitized into binary digits and 
one can obtain rectangular array of discrete values. The elements of these arrays are called pixels and 
the value of a pixel is called its gray level. The process of decomposing a picture into regions is called 
segmentation. Segmentation is basically a process of assigning the pixels. The one simple way of 
doing this process is called thresholding.  
 
Once a picture has been segmented into regions then it can be described by properties of regions. 
Some of the properties of the regions depend on the gray levels of the points and some on the 
positions of the points. 
 
2. TOPOLOGICAL STRUCTURE OF DIGITAL METRIC SPACES 
 
Let ℤn, ݊∈ ℕ, be the set of points in the Euclidean ݊ dimensional space with integer coordinates. 
 
Definition 2.1. [4] Let	݈, n be positive integers with 1≤ ݈ ≤ n. Consider two distinct points 
,ଶ݌,ଵ݌) = ݌                                               … , ,ଵݍ) = ݍ ,(௡݌ ,ଶݍ …  ௡) ∈ ℤnݍ,
The points p and q are ݇௟-adjacent if there are at most ݈ indices ݅ such that |݌௜ −  ௜| = 1 and for allݍ
other indices ݆, |݌௝ ௝݌ ,௝| ≠ 1ݍ− ௝ݍ=  . 
(i) Two points ݌ and ݍ in ℤ are 2-adjacent if |p – q|=1 (see Figure 2). 
 
 

 
                                                               
                                                Figure 2: 2-adjacency 
 
(ii) Two points ݌ and ݍ in ℤ2 are  
 
(a) 8-adjacent if the points are distinct and differ by at most 1 in each coordinate i.e., the 4-neighbours 
of (ݕ,ݔ) are its four horizontal and vertical neighbours (ݔ ± 1, ,ݔ)and (ݕ ݕ ± 1). 
 
(b) 4-adjacent if the points are 8-adjacent and differ in exactly one coordinate i.e., the 8-      neighbours 
of (ݕ,ݔ) consist of its 4-neighbours together with its four diagonal neighbours (ݔ + ݕ,1 ± 1) and(ݔ −
1, ݕ ± 1). (see Figure 3). 
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 Figure 3: 4-adjacency and 8-adjacency 
 
 
(iv) Two points ݌ and ݍ in ℤ3 are 26-adjacent if the points are distinct and differ by at most 1 in each 
coordinate. i.e., 
(a) Six faces neighbours (ݔ ± ,ݕ,1 ,ݔ)  ,(ݖ ݕ ± 1, ,ݔ)	 and (ݖ ,ݕ ݖ ± 1) 
(b) Twelve edges neighbours	(ݔ ± 1, ݕ ± 1, ,(ݖ ,ݔ) ݕ ± 1, ݖ ± 1) 
(c) Eight corners neighbours (ݔ ± 1, ݕ ± 1, ݖ ± 1) 
(v) Two points ݌ and ݍ in ℤ3 are 18-adjacent if the points are 26-adjacent and differ by at most 2 
coordinate. i.e.,  
 
(a)Twelve edges neighbours	(ݔ ± ݕ,1 ± 1, ,(ݖ ݕ,ݔ) ± 1, ݖ ± 1) 
(b) Eight corners neighbours (ݔ ± 1, ݕ ± 1, ݖ ± 1) 
 
(vi) Two points ݌ and ݍ in ℤ3 are 6-adjacent if the points are 18-adjacent and differ in exactly     
       one coordinate. i.e., 
(a) Six faces neighbours (ݔ ± ,ݕ,1 ,ݔ)  ,(ݖ ݕ ± 1, ,ݔ)	 and (ݖ ,ݕ ݖ ± 1) (See Figure 4). 
 

   
     
   6-adjacency                                                  18-adjacency                                     26-adjacency                                             
 
Figure 4: Adjacencies in	ℤ3 
 
 
Definition 2.2. Let ℕ and ℝ denote the sets of natural numbers and real numbers, respectively. Let 
∅≠X⊂ ℤn , ݊ ∈ ℕ.	A digital image is a pair (ܺ, ݇), where ݇	is an adjacency relation on ܺ. Technically, a 
digital image (ܺ, ݇) is an undirected graph whose vertex set is the set of members of ܺ and whose 
edge set is the set of unordered pairs {ݔ଴,ݔଵ} ⊂ ܺ		such that ݔ଴ ≠ ݇ ଵ areݔ ଴ andݔ ଵ andݔ −	adjacent. 
 
The notion of digital continuity in digital topology was developed by Rosenfeld [15] to study 2D and 
3D digital images. Boxer [2] developed the digital version of several notions of  topology and Ege and 
Karaca [7] studies Banach Contraction Principle in digital images.  
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Boxer [3] defined a ݇ – neighbor of a point ݌ ∈ ℤn. It is a point of ℤn that is ݇ - adjacent to ݌, where ݇ ∈ 
{2,4,6 8,18,26} and ݊ ∈ {1, 2, 3}.The set  
 
                           ௞ܰ (݌) = {q | q is	݇ - adjacent to ݌}  
 
is called the ݇ -neighborhood of ݌. Boxer [2] defined a digital interval as  
 
                                    														[a, b]ℤ= {ݖ ∈ ℤ | a ≤ ݖ ≤ b}, 
 
where  a, b ∈ ℤ and a < b. A digital image ܺ ⊂ ℤn is ݇-connected [11]  if and only if for every pair of 
distinct points ݕ,ݔ ∈ ܺ, there is a set {ݔ଴,ݔଵ,ݔଶ	,…,ݔ௥}  of points of a digital image ܺ such that ݔ	 = 	  ,଴ݔ
ݕ =  .1 -ݎ ...௜ାଵ  are ݇ -neighbors and  ݅ = 0, 1ݔ ௜  andݔ  ௥  whereݔ
 
Definition 2.3. [3] Let (ܺ,݇଴)  ⊂		ℤ௡బ, (ܻ,	݇ଵ) ⊂	ℤ௡భ be digital images and f: 		ܺ → ܻ be a function. 
(i)If for every ݇଴-connected subset ܷ of ܺ, ݂	(ܷ) is a ݇ଵ-connected subset of ܻ, then ݂  is said to be 
(݇଴,݇ଵ)-continuous. 
(ii) ݂ is (݇଴,݇ଵ)-continuous  for every ݇଴-adjacent points {ݔ଴,ݔଵ} of ܺ, either ݂(ݔ଴) 	=  and (଴ݔ)݂ or	(ଵݔ)݂	
 . ܻ are  ݇ଵ-adjacent in (ଵݔ)݂
(iii) If ݂  is (݇଴ ,݇ଵ )-continuous, bijective and ݂ିଵ  is (݇଴ ,݇ଵ )-continuous, then ݂  is called (݇଴ ,݇ଵ )-
isomorphism and denoted by  ≅(௞బ ,௞భ) ܻ. 
 
Definition 2.4. Let (ܺ, ݇) be a digital images set. Let ݀ be a function from  
(ܺ, ݇) 	× 	(ܺ,݇) 	 → ℤ௡ satisfying the following: 
(i)  ݀(ݔ, ≤ (ݕ 	0;                                                                                          (Non–negativity) 
(ii)  ݀(ݔ, 	ݔ  iff 0 = (ݕ =  (Identity)                                                                        ;ݕ	
(iii)  ݀(ݔ, (ݕ 	= ,ݕ)݀	  (Symmetry)                                                                             ;(ݔ
(iv)  ݀(ݔ, (ݖ 	 ≤ ,ݔ)݀		 (ݕ 	+ ,ݕ)݀	  (Triangle inequality)                                                           .(ݖ
 
The function ݀ is called digital metric. The set (ܺ,݇) together with ݀	is denoted by the triplet (ܺ, ݀, ݇) 
called a digital metric space.  
 
Proposition 2.5. [10] Let (ܺ,݀, ݇) be a digital metric space. A sequence {ݔ௡} of points of a digital metric 
space (ܺ,݀,݇) is  
(i) a Cauchy sequence if and only if there is α ∈ ℕ such that for all, ݊,݉ 	≩  then , ߙ	
௡ݔ)݀                                                           (௠ݔ,	 	≨ 	1 i.e., ݔ௡ = ௠ݔ .  
(ii) convergent  to a point    ݈ ∈ ܺ if   for all ߳ ≩ 0, there is α ∈ ℕ such that for all ݊		 ≩  then  ߙ	
௡ݔ)݀ 	, ݈) ≨ 	߳	, ݅. ௡ݔ.݁ = ݈	. 
 
Proposition 2.6. [10]  A sequence {ݔ௡} of points of a digital metric space (ܺ, ݀, ݇) converges to a limit 
݈ ∈ ܺ if there is α ∈ ℕ such that for all	݊	 ≩ ௡ݔ then , ߙ	 = ݈. 
 
Theorem 2.7. [10]  A digital metric space  (ܺ, ݀, ݇) is always complete.   
 
Definition 2.8. [7] Let (ܺ, ݀, ݇) be any digital metric space. A self map ݂ on a digital metric space is 
said to be digital contraction, if there exists a λ∈ [0, 1) such that for all ݔ,  ,ܺ ∋ ݕ
,(ݔ)݂)݀                                                                ((ݕ)݂ 	≤ ,ݔ)݀	ߣ	  (ݕ
Proposition 2.9. [7] Every digital contraction map ݂:	(ܺ,݀,݇) 	→ 	 (ܺ, ݀, ݇)	is digitally continuous. 
 
Proposition 2.10. [10] Let (ܺ,݀,݇) be a digital metric space. Consider a sequence {ݔ௡} ⊂ ܺ	such that the 
points in {ݔ௡} are ݇  adjacent. The usual distance ݀(ݔ௜ ,  ௝) which is greater than or equal to 1 and atݔ
most √ t depending on the position of the two points where t ∈ ܼା. 
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3. MAIN RESULT  
 
In 1984, Wang et al. [16] introduced the notion of expansive mapping in metric spaces. The following 
definition in digital metric spaces is analogue to the notion of expansive mappings in metric spaces. 
 
Definition 3.1 Suppose that (ܺ,݀,݇) is a complete digital metric space and ܵ ∶ 	ܺ	 → 	ܺ be a mapping. 
The mapping ܵ satisfy the condition ݀(ܵ(ݔ),ܵ(ݕ)) 	≥ ,ݔ)݀	ߙ	 ,ݔ holds for all (ݕ 	ݕ ∈ 	ܺ and ߙ	 > 1, then 
ܵ is called a digital expansive mapping. 
 
Theorem 3.2 Let, (ܺ, ݀, ݇) be a digital metric space and S be an onto continuous self map on ܺ satisfy 
the following  
                                             ݀൫ܵ(ݔ),ܵ(ݕ)൯ ≥   ߤߙ
 
where ߙ > 1 , and ߤ ≡ ,ݔ)ߤ (ݕ = ݔܽ݉ ቄ݀(ݕ,ݔ), ௗ൫௫,ௌ(௫)൯ାௗ൫௬ ,ௌ(௬)൯

ଶ
, ൛ௗ൫௫,ௌ(௬)൯ାௗ൫௬ ,ௌ(௫)൯ൟ

ଶ
ቅ  then S has a fixed 

point. 
 
Proof: Let ݔ଴ ∈ ܺ. Since ܵ	is onto, there exists an element ݔଵ satisfying		ݔଵ ∈ ܵିଵ(ݔ଴). By induction, one 
can choose, ݔ௡ ∈ ܵିଵ(ݔ௡ିଵ) where (݊ = 2,3,4, . . . ). 
 
If ݔ௠ିଵ =  ௠ is a fixed point of ܵ. Without loss of generality, we can supposeݔ ௠ for some ݉, thenݔ
௡ݔ ≠  ,௡ିଵ for every ݊. Soݔ

(௡ݔ,௡ିଵݔ)݀ = ݀൫ܵ(ݔ௡),ܵ(ݔ௡ାଵ)൯ ≥ ௡ߤߙ  
 
where,  ߤ௡ = ௡ݔ)ቄ݀ݔܽ݉ ,(௡ାଵݔ, ௗ൫௫೙,ௌ(௫೙)൯ାௗ൫௫೙శభ,ௌ(௫೙శభ)൯

ଶ
, ௗ൫௫೙,ௌ(௫೙శభ)൯ାௗ൫௫೙శభௌ(௫೙)൯

ଶ
ቅ 

= ቊ݀(ݔ௡ ,(௡ାଵݔ,
௡ݔ)݀ (௡ିଵݔ, + (௡ݔ,௡ାଵݔ)݀

2
,
,௡ାଵݔ)݀ (௡ିଵݔ

2
ቋ 

 
Case1: ݀(ݔ௡ିଵ,ݔ௡) ≥  (௡ାଵݔ,௡ݔ)݀ߙ
 
Case2: ݀(ݔ௡ିଵ,ݔ௡) ≥ ߙ ௗ(௫೙ ,௫೙షభ)ାௗ(௫೙,௫೙శభ)

ଶ
 

 

−(௡ݔ,௡ିଵݔ)݀ ൬ఈ
ଶ
൰(௡ݔ,௡ିଵݔ)݀ ≥ ఈ

ଶ
௡ݔ)݀  ,(௡ାଵݔ,

 
ቀଶିఈ

ఈ
ቁ (௡ݔ,௡ିଵݔ)݀ ≥  ,(௡ାଵݔ,௡ݔ)݀

 
(௡ݔ,௡ିଵݔ)݀ ≥ ݇ where (௡ାଵݔ,௡ݔ)݀݇ = ఈ

ଶିఈ
> 1 i.e., ݀(ݔ௡,ݔ௡ାଵ) ≤ ଵ

௞
since, if 1)(௡ݔ,௡ିଵݔ)݀ <   then ,ߙ

 
clearly ݇ > 1 and if ߙ ≥ 2 then we get ݀(ݔ௡ (௡ାଵݔ, < 0 which is a contradiction) 
 
Case3: ݀(ݔ௡ିଵ,ݔ௡) ≥ ߙ ௗ(௫೙శభ,௫೙షభ)

ଶ
 

which is same as Case2, since ݀(ݔ௡ାଵ, (௡ିଵݔ ≤ (௡ݔ,௡ିଵݔ)݀ +  (௡ାଵݔ,௡ݔ)݀
 
So, in each case ݀(ݔ௡ିଵ,ݔ௡) ≥ ,௡ݔ)݀∅ ∅ ௡ାଵ) for someݔ > 1. 

௡ݔ)݀ (௡ା௠ݔ, ≤ ௡ݔ)݀ (௡ାଵݔ, + ⋯+ (௡ା௠ݔ,௡ା௠ିଵݔ)݀ ≤ ൬
1
∅
൰
௡ାଵ

(ଵݔ,଴ݔ)݀ + ⋯+ ൬
1
∅
൰
௡ା௠

(ଵݔ,଴ݔ)݀

≤
ቀ1
∅ቁ

௡ାଵ

1 − 1
∅
 (ଵݔ,଴ݔ)݀

Clearly, {ݔ௡} is a Cauchy sequence in ܺ. Since, ܺ is complete {ݔ௡} converges to some ݔ ∈ ܺ. Since, ܵ is 
onto there exists ݕ ∈ ܺ such that ݕ ∈ ܵିଵ(ݔ) and for infinitely many ݊, ݔ௡ ≠  ݊ for such ,ݔ
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௡ݔ)݀ (ݔ, = ݀൫ܵ(ݔ௡ାଵ), ൯(ݕ)ܵ ≥ ,௡ାଵݔ)ߤߙ  (ݕ

Now, ߤ(ݔ௡ାଵ,ݕ) = ݔܽ݉ ቊ݀(ݔ௡ାଵ,ݕ), ௗ൫௫೙శభ,ௌ(௫೙శభ)൯ାௗ൫௬ ,ௌ(௬)൯
ଶ

,
ௗቀ௫೙శభ,ௌ(௬)ቁାௗ൫௬,ௌ(௫೙శభ)൯

ଶ
ቋ 

On taking limit as ݊ → ∞, we get, 

,ݔ)ߤ (ݕ = ݔܽ݉ ቊ݀(ݕ,ݔ),
݀൫(ݔ)ܵ,ݔ൯ + ݀൫(ݕ)ܵ,ݕ൯

2
,
݀൫ݔ, ൯(ݕ)ܵ + ݀൫ݕ, ൯(ݔ)ܵ

2
ቋ

= ቊ݀(ݔ, ,(ݕ
݀൫ݔ, +൯(ݔ)ܵ ,ݔ)݀ (ݕ

2
,
݀൫(ݔ)ܵ,ݕ൯

2
ቋ 

 
Also, 0 ≥ (ݕ,ݔ)ߤ which implies ,(ݕ,ݔ)ߤ݇ = 0. So, ݀(ݔ, (ݕ = 0 or ݀൫(ݔ)ܵ,ݕ൯ = 0. 
 
If ݀(ݕ,ݔ) = 0, then ݔ =  .ݕ
 
If ݀൫(ݔ)ܵ,ݕ൯ = 0, then ݕ = ݔ but (ݔ)ܵ = ݔ  ,and S is continuous. Therefore (ݕ)ܵ =  .ݕ
 
(Since, by continuity of	ܵ, we get  ݕ = lim௡→∞  Then, there .ݕ converges to (௡ݔ)Therefore, S .(௡ݔ)ܵ
exist 		ܰ ∈ ℕ , such that, 	∀	݊ > ܰ, (௡ݔ)ܵ ∈ ܵିଵ(ݔ) , by construction ݔ௡ାଵ ∈ ܵିଵ(ݔ)  and hence by 
uniqueness of limit ݔ =  (ݕ
 
Thus, ܶ has a fixed point in ܺ. 
 
Theorem 3.3 Let, (ܺ, ݀, ݇) be a complete digital metric space and S be an onto self map which is 
continuous on ܺ. Let ܵ satisfy the condition 
                                                   ݀൫ܵ(ݔ), ൯(ݕ)ܵ ≥   ߤߙ
where ߙ > 1, and ߤ ≡ ,ݔ)ߤ (ݕ = ݔܽ݉ ቄ݀(ݕ,ݔ), ௗ൫௫,ௌ(௫)൯ାௗ൫௬ ,ௌ(௬)൯

ଶ
,݀൫(ݕ)ܵ,ݔ൯,݀൫ݕ,  ൯ቅ then S has a fixed(ݔ)ܵ

point. 
 
Proof: Let  ݔ଴ ∈ ܺ, since ܵ is onto, there exists an element ݔଵ satisfying ݔଵ ∈ ܵିଵ(ݔ଴). By the same way, 
we can choose, ݔ௡ ∈ ܵିଵ(ݔ௡ିଵ) where (݊ = 2,3,4, . . . ). 
 
If ݔ௠ିଵ =  ௠ is a fixed point of ܵ. Without loss of generality, we can supposeݔ ௠ for some ݉, thenݔ
௡ݔ ≠  ,௡ିଵ for every ݊. Soݔ

(௡ݔ,௡ିଵݔ)݀ = ݀൫ܵ(ݔ௡),ܵ(ݔ௡ାଵ)൯ ≥ ௡ߤߙ  
where,  ߤ௡ = ௡ݔ)ቄ݀ݔܽ݉ ,(௡ାଵݔ, ௗ൫௫೙,ௌ(௫೙)൯ାௗ൫௫೙శభ,ௌ(௫೙శభ)൯

ଶ
, ݀൫ݔ௡,ܵ(ݔ௡ାଵ)൯,݀൫ݔ௡ାଵ,ܵ(ݔ௡)൯ቅ 

= ቊ݀(ݔ௡ ,(௡ାଵݔ,
௡ݔ)݀ (௡ିଵݔ, + (௡ݔ,௡ାଵݔ)݀

2 , ,௡ାଵݔ)݀  ௡ିଵ)ቋݔ

Case1: ݀(ݔ௡ିଵ,ݔ௡) ≥  (௡ାଵݔ,௡ݔ)݀ߙ
 
Case2: ݀(ݔ௡ିଵ,ݔ௡) ≥ ߙ ௗ(௫೙ ,௫೙షభ)ାௗ(௫೙,௫೙శభ)

ଶ
 

−(௡ݔ,௡ିଵݔ)݀ ൬ఈ
ଶ
൰(௡ݔ,௡ିଵݔ)݀ ≥ ఈ

ଶ
௡ݔ)݀  ,(௡ାଵݔ,

ቀଶିఈ
ఈ
ቁ (௡ݔ,௡ିଵݔ)݀ ≥  ,(௡ାଵݔ,௡ݔ)݀

 
(௡ݔ,௡ିଵݔ)݀ ≥ =where k (௡ାଵݔ,௡ݔ)݀݇ ఈ

ଶିఈ
> 1 

 
(since, if 1 < ߙ < 2 , then clearly ݇ > 1  and if ߙ ≥ 2  then we get ݀(ݔ௡ (௡ାଵݔ, < 0  which is a 
contradiction) 
 
Case3: ݀(ݔ௡ିଵ,ݔ௡) ≥  (௡ିଵݔ,௡ାଵݔ)݀ߙ
 
which is same as Case2, since ݀(ݔ௡ାଵ, (௡ିଵݔ ≤ (௡ݔ,௡ିଵݔ)݀ +  (௡ାଵݔ,௡ݔ)݀
 
So, in each case ݀(ݔ௡ିଵ,ݔ௡) ≥ ,௡ݔ)݀∅ ∅ ௡ାଵ) for someݔ > 1. 
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௡ݔ)݀ (௡ା௠ݔ, ≤ ௡ݔ)݀ (௡ାଵݔ, + ⋯+ (௡ା௠ݔ,௡ା௠ିଵݔ)݀ ≤ ൬
1
∅
൰
௡ାଵ

(ଵݔ,଴ݔ)݀ + ⋯+ ൬
1
∅
൰
௡ା௠

(ଵݔ,଴ݔ)݀

≤
ቀ1
∅ቁ

௡ାଵ

1 − 1
∅
 (ଵݔ,଴ݔ)݀

Clearly, {ݔ௡} is a Cauchy sequence in ܺ. Since, ܺ is complete {ݔ௡} converges to some ݔ ∈ ܺ. Since ܵ is 
onto there exists ݕ ∈ ܺ such that ݕ ∈ ܵିଵ(ݔ) and for infinitely many ݊, ݔ௡ ≠  ݊ for such ,ݔ
 

௡ݔ)݀ (ݔ, = ݀൫ܵ(ݔ௡ାଵ), ൯(ݕ)ܵ ≥ ,௡ାଵݔ)ߤߙ  (ݕ
 
Now, ߤ(ݔ௡ାଵ,ݕ) = ݔܽ݉ ቄ݀(ݔ௡ାଵ, ,(ݕ ௗ൫௫೙శభ,ௌ(௫೙శభ)൯ାௗ൫௬ ,ௌ(௬)൯

ଶ
,݀൫ݔ௡ାଵ,ܵ(ݕ)൯, ݀൫ݕ,ܵ(ݔ௡ାଵ)൯ቅ 

 
On taking limit as ݊ → ∞, we get, 

(ݕ,ݔ)ߤ = ,ݔ)ቊ݀ݔܽ݉ ,(ݕ
݀൫ݔ, ൯(ݔ)ܵ + ݀൫ݕ, ൯(ݕ)ܵ

2 ,ݕ൫݀,(ݔ,ݔ)݀, ൯ቋ(ݔ)ܵ

= ቊ݀(ݕ,ݔ),
݀൫(ݔ)ܵ,ݔ൯ + (ݕ,ݔ)݀

2 , ݀൫ݕ,  ൯ቋ(ݔ)ܵ

Also, 0 ≥ (ݕ,ݔ)ߤ which implies ,(ݕ,ݔ)ߤ݇ = 0. So, ݀(ݔ, (ݕ = 0 or ݀൫(ݔ)ܵ,ݕ൯ = 0. 
 
If ݀(ݕ,ݔ) = 0, then ݔ =  .ݕ
 
If ݀൫(ݔ)ܵ,ݕ൯ = 0, then ݕ = ݔ but (ݔ)ܵ = ݔ ,and ܵ is continuous. So (ݕ)ܵ =  .ݕ
 
Thus, ܵ has a fixed point in ܺ.  
 
Corollary 3.4: If the map ܶ in the theorems (3.2) and (3.3) be bijective, then ܶ has a unique fixed point. 
 
4. SCOPE OF THE STUDY 
 
The aim of this paper is to discuss the digital version of some fixed point theorems concerning 
expansive maps. Somehow the results in this paper are useful in zooming out of digital images and 
the array of digital images. In future, some other properties of digital images can be discussed with 
the viewpoint of fixed point theory. 
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