Bulletin of Pure and Applied Sciences. Vol. 37E (Math & Stat.), No.1, 2018.P.15-20 Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2018.00003.6

Neighborhood Cordial (Nhd-C) Labeling - A New Method of Graph Labeling

Mukund V. Bapat¹

Author Affiliation:

¹Ex. Associate Professor, Department of Mathematics, Shri Kelkar College, Devgad, Sindhudurg, Maharashtra. India-416613.

Corresponding Author:

Dr. Mukund V. Bapat, At and Post: Hindale, Tal: Devgad, Dist.: Sindhudurg, Maharashtra, India-416630.

E-mail: mukundbapat@yahoo.com

Received on 11.01.2018, Accepted on 26.02.2018

Abstract

We introduce a new technique of graph labeling named as Neighborhood Cordial (Nhd-C) Labeling of Graphs and show that paths, cycles, FL (Cn), S (C₃,n), pathunion Pm(C₃), Pm (C₄), $K_{1,m}$: $K_{1,m}$, TreeYn are nhd-c graphs.

Keywords: Nhd, neighborhood, cordial, pathunion, snakes, flag graph etc.

Subject Classification: 05C78

1. INTRODUCTION

The graphs considered here are finite, simple and connected. For general definitions and terminology we refer to Harary [4], and Gallian [4]. The concept of cordial labeling was introduced by I. Cahit. [4]. Then up till now a number of cordial labelings have been proposed by different authors [3],[5],[9]. The concept of nhd-p labeling was introduced by Patel and Shrimali [8] in 2015. Making use of neighborhood concept of vertex we combine it with cordiality to obtain Neighborhood Cordial (Nhd-C) Labeling Of Graph.

Let G be a (p,q) graph .Define a function $f:V(G) \rightarrow \{1,2,...p\}$ such that for every vertex $v \in V(G)$, $\deg(v)>1$ the gcd $\{f(u)/u \in N(v)\}$ is considered to label of the vertex v. This produces the function $f^*: V(G) \rightarrow \{0,1\}$ and $f^*(u) = 1$ when gcd $\{f(u)/u \in N(v)\}$ is 1 and 0 otherwise. Further for degree one vertex (pendent vertex) the f^* label is taken as 0 if it is adjacent to vertex x with f(x) as a even number and $f^*(x)$ is 1 otherwise. Further number of vertices with label 0 and that with label 1 differ at most by

1.We use the convention $v_f(0,1) = (x,y)$ to indicate the number of vertices with label 0 are x and that with label 1 are y in number. The graphs that admit nhd-cordial labeling are called as nhd-c graphs. In this paper we have defined and shown that paths, cycles, Flag of cycles, $S(C_3,n)$, y-tree y_n , pathunion $Pm(C_3)$, $Pm(C_4)$ $K_{1,m}$: $K_{1,m}$ etc. are Nhd-c graphs.

2. DEFINITIONS

- **2.1** Path Pn is a sequence of vertices and edges given by path (uv) = $(v_1,e_1,v_2,e_2,v_3,e_3...v_n)$. It has n-1 edges and n vertices.
- **2.2** Cycle Cn is a closed path (uu). It is generally given by $(v_1=u,e_1,v_2,e_2,...,v_n,e_n,u)$. We also can write a (uu) cycle as $(u=v_1,v_2,v_3,...,v_n,u)$.
- **2.3** S (C_3,n) is a snake on n-1 blocks of C_3 . We start with path $(v_1,v_2,...,v_n)$. Between every two consecutive vertices of Pn, namely v_i and v_{i+1} take new vertex u_{i1} and join it by new edges (v_iu_{i1}) , $(u_{i1}v_{i+1})$. Thus S(c3,n) has 3(n-1) edges and 2n-1 vertices.
- **2.4** FL (G) is obtained by attaching an edge to a suitable vertex of G.It has |V(G)| +1 vertices and |E(G)| +1 edges.
- **2.5** Pm (G) is pathunion of G. We start with a path p_m and m copies of a (p,q) graph G are taken. At each vertex of path Pm a copy of G is attached. The point of attachment is same for all copies of G. It has mp vertices and q+m-1 edges.
- **2.6** A *y*-tree is a graph obtained from a path by appending an edge to a vertex of a path adjacent to an end point and it is denoted by *Yn* where *n* is the number of vertices in the tree.
- **2.7** The graph $K_{1,m}$: $K_{1,n}$ is obtained by joining the center u of the star $K_{1,a}$ and the center v of another star $K_{1,m}$ to a new vertex w. The number of vertices is n + m + 3 and the number of edges is n + m + 2.

3. MAIN RESULTS

Theorem 3.1: Path Pn is nhd-c graph.

Proof: The ordinary labels of path are defined using vertices as be $(v_1, v_2, v_3, ..., v_n)$. Define $f:V(Pn) \rightarrow \{1, 2, 3, ..., n\}$ given by $f(v_i) = i$, i = 1, 2, ..., n. If n = 2x this produces $v_f(0, 1) = (x, x)$ and for n = 2x + 1 we have $v_f(0, 1) = (x + 1, x)$.

Theorem 3.2: Cn is nhd-c graph for an even number n, where, n>3.

Proof: Define f: V (Cn) \rightarrow {1,2,..n} as f(v_i) =i, where, i=1,2,..,n. Taking n =2x, we have v_f (0,1) = (x,x) from where the result follows.

Theorem 3.3: FI (Cn) is nhd-c graph.

Proof: A Flag of Cn is defined using vertices as $v1, v2, v3..., v_n, v_{n+1}$. Define f: $V(G) \rightarrow \{1, 2, 3, ..., 2x+1\}$ given by $f(v_i) = i$, where, i = 1, 2, ..., n.

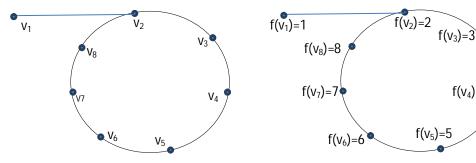


Fig 3.1: Ordinary labeling of

Fig 3.2: Nhd-c labeling of FL(C₇)

The numbers observed are for n = 2x, $v_f(0,1) = (x+1,x)$ and for n = 2x+1, $v_f(0,1) = (x,x)$.

Theorem 3.4: S (C_3, n) , a snake on n-1 blocks is nhd-c graph for n>3.

Proof: A C_3 snake S (C_3,n) is obtained by taking a path defined by using the vertices as P_n given by $v_1, v_2, v_3, ..., v_n$. A new vertex u_i is taken between vertices v_i v_{i+1} (not on edge $v_i v_{i+1}$) and new edges $(v_i w_i)$ and $(w_i v_{i+1})$. A function $f: V(G) \rightarrow \{1,2,3,...,2(n-1)+1\}$ given by $f(v_i) = 2i$ for i = 1,2,4,5,...,n-2; $f(v_3) = 2(n-1)$, $f(v_{n-1}) = 6$, $f(v_n) = 3$, $f(u_1) = 2n-1$, $f(u_2) = 1$, $f(u_1) = 2i-1$ for i = 3,4,...

We get number distribution as $v_f(0,1) = (n-1,n)$

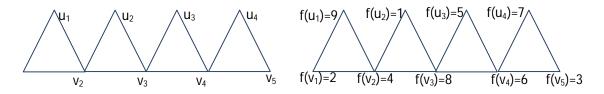


Fig 3.3: S(C₃,4) with ordinary labeling

Fig3.4: $S(C_3,4)$ with nhd-c labeling

Theorem 3.5: Pm (C3) is nhd-c graph iff m is an even number.

Proof: Take a path defined by using vertices as $p_m = v_1, v_2, v_3, \dots, v_n$. The vertices of C_3 at i^{th} vertex of path Pn are given by $w_{i,1} = v_i, w_{i,2}, w_{i,3}$. It has p = 3n vertices and q = 4n - 1 edges.

A function $f:V(G) \rightarrow \{1,2,3...,p\}$ given by: $f(v_i)=2+(i-1)6$; $f(w_{i1})=f(v_i)+2$; $f(w_{i2})=f(v_i)+4$; $f(v_{x+j}=6(j-1)+1)$; $f(w_{x+j,1})=f(v_{x+j})+2$; $f(w_{x+j,2})=f(v_{x+j})+4$ for i=1,2,...x and j=1,2,...x where, $x=\frac{p}{2}$, p being even number.

The proof then follows.

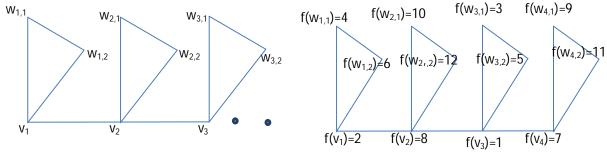


Fig 3.5: P_m(C₃) ordinary labeling

Fig 3.6: $P_m(C_3)$ nhd-c labeling

Theorem 3.6: Pm (C₄) is nhd-c graph.

Proof: Take a path defined using vertices as $p_m=v_1,v_2,v_3,...,v_n$. The vertices of C_4 at i^{th} vertex of path Pn are given by $w_{i,1}=v_i,w_{i,2},w_{i,3}$, $w_{i,4}$. It has p=4n vertices and q=5n-1 edges. A function $f:V(G)\rightarrow \{1,2,3...,p\}$ given by

 $f(v_i)=4(i-1)+1$, i=1,2,...n $f(w_{ii})=f(v_i)+j$, j=1,2,3. This gives label numbers distribution as $v_f(0,1)=(2n,2n)$

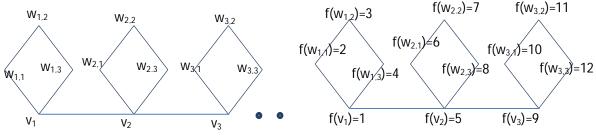
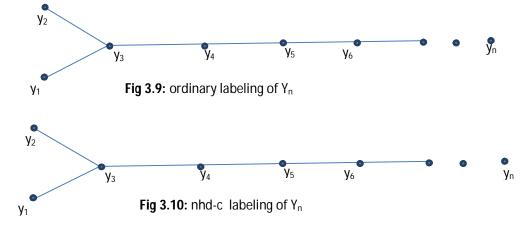


Fig 3.7: ordinary labeling of $P_m(C_4)$

Fig 3.8: nhd-c labeling of $P_m(C_4)$

Theorem 3.7: A y-tree y_n is nhd-c graph for n>5.

Proof: A y-tree is defined by vertices as $y_1, y_2, y_3, y_4, ..., y_n$. This is shown in figure 3.9 below.



Define a function $f:V(G) \rightarrow \{1,2,3..n\}$

Case I. When n = 6. $f(y_1)=1$, $f(y_2)=5$, $f(y_3)=3$, $f(y_4)=2$, $f(y_5)=6$, $f(y_6)=4$. Note that vf(0,1)=(3,2)

Case II. When n_i is odd number >6, say n = 2x+1, then

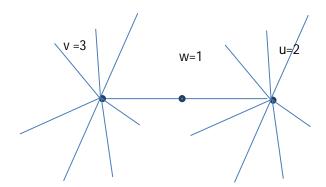
 $f(y_1)=5$, $f(y_2)=n$, $f(y_3)=1$, $f(y_i)=2i-1$, i=4,5,...x $f(y_{x+1})=3$, $f(y_{x+2})=2$, $f(y_{x+3})=6$, $f(y_{x+4})=4$, $f(y_{x+i})=2(i-1)$, i=5,6,...,x+1. The number distribution is $v_f(0,1)=(x+1,x)$

Case III. When n is even number, say 2x, then $f(y_1)=5$, $f(y_2)=7$, $f(y_3)=1$, $f(y_4)=9$, $f(y_j)=2j-1$, j=5,...,x-1, $f(y_x)=3$, $f(y_{x+1})=2$, $f(y_{x+2})=6$, $f(y_{x+3})=4$, $f(y_{x+j})=2j$, j=4,5,...x.

The number distribution is $v_f(0,1)=(x,x)$.

Theorem 3.8: The graph $K_{1,m}$: $K_{1,m}$ is a nhd-c graph.

Proof: The vertices adjacent to u are $u_1, u_2, ..., u_m$ and that adjacent to v be $v_1, v_2, v_3, ..., v_m$. The degree 2 vertex be labeled as w.



Once $f^*(v) = 3$ and $f^*(u) = 2$ is fixed all the pendent vertices adjacent to v will receive f^* image as 1 and that all pendent vertices adjacent to v will receive v label as 0, this is independent of what actual flabels are received by v and v, v and v. As v and v in the label number distribution is v (0,1)=(v,v).

4. CONCLUSIONS

We have defined a new type of graph labeling called as nhd-c labeling. We have discussed different families and have shown them to be nhd-c graphs. Further attention on C4-snakes, path unions of even cycles (n>4) as well path unions on odd cycles (n>3) is required.

REFERENCES

- [1]. Bapat M.V. Some vertex prime graphs and a new type of graph labeling, IJMTT, Vol 47 Part 1, 23-29, 2017.
- [2]. Bapat Mukund V. Ph.D. Thesis, Title "Equitable and other types of graph labelings', University of Mumbai 2004.
- [3]. Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue
- [4]. I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207

Mukund V. Bapat / Neighborhood Cordial (Nhd-C) Labeling - A New Method of Graph Labeling

- [5]. Yilmaz, Cahit, E-cordial graphs, Ars combina, 46,251-256.
- [6]. Joseph A. Gallian. Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, 2015.
- [7]. Harary. Graph Theory, Narosa Publishing, New Delhi, 1969.
- [8]. S. K. Patel and N. P. Shrimali. Neighborhood-prime labeling, Internet J. Math. and Soft Comput., 5, no. 2, ,135-143, 2015.
- [9]. M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155–163, 2004.