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ABSTRACT

We have discussed and demonstrated the various properties and theorems of the Martinez-Kaabar
fractal-fractional (MK FrFr) Elzaki transform in this work, including the linearity property, the
convolution theorem property, and the example application to solve the Martinez-Kaabar MK Volterra
Integral Equation of the Second Kind.
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1. INTRODUCTION

Integrated transformations have been used extensively as a method to address a variety of issues in both
pure and practical mathematics during the last 200 years. The Laplace transform concept was first
proposed in 1782 by a number of integrated transformations, including the P. S. Laplace (1749-1827). [3,
8],

L[g(@):6]=[eg(r)dr=G(5),7>0 1)
0
Tarig Elzaki first presented the modified Laplace transform (also known as the Elzaki transform) in the
early 2011s.The function of exponential order is defined by the modified Laplace transform (also known
as the Elzaki transform) [1, 2]. Examine the following function in the set S.
I

S ={g(z):IM ,k ,k,>0,|g(0)| <M e" ,if 7 (1) x[0,00)}
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For a given function g(7) in the set § , the constant M must be finite, number k& ,k, may be finite or
infinite. The Elzaki transform denoted by the operator E is defined as

E[g(@):p)]=p e ’g@)Mdr=T(p), 7>0 @)
The variable p in this transforms is used to factorize the variable 7 .

The following is how this document is structured: The Martinez-Kaabar fractal-fractional (MK FrFr)
Calculus is first defined in some fundamental terms. Next, we establish a novel concept of the Martinez-
Kaabar fractal-fractional (MK FrFr) Elzaki transform, which in this work is called the MK Elzaki
transform and involves the MK integral operator. The Martinez-Kaabar MK Volterra Integral Equation of
the Second Kind may be solved using this novel approach, which is related to the new fractal-fractional
transformation, the linearity property, and the Convolution theorem property.

2. FUNDAMENTAL CONCEPTS OF MARTINEZ-KAABAR FRACTAL-FRACTIONAL (MK FRFR)
CALCULUS

Definition 2.1. [14] Suppose that g(r)eC" ([/1,00)) is differentiable on [1,0), where 1>0 ; if g is a
fractal differentiable on [Z,c0) of order g, then the FrFrD of g of order « in the context of C with the

power law is written as

D 1y a, [ m-a-1 48 (X)
FFD yeb o (1) = T—Xx ! dx |
e F(m—a);[( e
©)
m-l<a,B<m ,meN ,
Where dg();)zhmg(fﬂ)—g/EX) . @)
x I
Theorem 2.1. Suppose that 0 <, <1 ,and o >—1.Then, we have:
I'o-pg+1
I-‘rI-‘rDDa,ﬁg(To-): o (O- ﬁ ) Tu’—a—/}+l' (5)
oo BT (c—a-p+2)

Remark 2.1. If g(r)= A for every real constant 4, then “"D*”(1)=0.

Definition 2.2. A function: g : [O,oo) — R , the MK derivative of order 0 < <1, of gatz>0
is written as
g (T+5‘Prz’“’ﬁ)—g(1)
o
F(a -p+ 1)
BT (c—a-p+2)

If gisMK «,p -differentiable in some (0,7), and » >0, and lim "D “’g(r) exists, then it is written as
70"

MK a,p 1
D*"g(r)= }gré

: ©)

Where M (a,B,0)= =¥ with 0<fg<1,and o>-1.

MED“hg(0) = lim “*D* g (7). @)
70"
Theorem 2.2. [14] Suppose thata <0,5<1,, and g is a MK «, g -differentiable at a pointz >0. If,
further, g is a differentiable function, then
MK 1y a,ﬁg (r) = @ MK pafaap dg(r) , ®)
dr

r (0 -p+ 1)
BT (c—-a-p+2)
Theorem 2.3. (Chain Rule). Assume that o <0,5<1, 0 >-1,f isan MK «, g -differentiable

Where ¥ =M (a,p,0)= with o>-1.
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at 7>0 and g is differentiable at f (), then
YD (g of )z)=g'(f (2)) DS (2).
©)

Remark 2.2. According to Theorem 2.6, the MK derivative of order o of some elementary functions
can be expressed as:

i MK pyap ﬂ at+f-1 | _
= Eo

B s B patpel
ii- MKD a.p e (a+p-1)I'(a) _ e(a+ﬁ—1)l‘(a)

iii- "*p*’ I:sin [mr“*ﬂ‘)ﬂ = cos[mr‘”ﬂl)l .

iv- M<pes {cos[mr“ﬂl)ﬂ — —sin (Wﬁ*“)} :

Remark 2.3. From the differentiability property of the MK derivative, which is «, 3 -differentiability,
and by assuming that g(z) > 0, then Equation (9) can be represented as:

YD (f o g)(r) =$g ()77 "D ’f (g (7)) "D’ g (2).
(10)

F(O'—ﬂ+l)
Br(c—a-p+2)

The MK «, g -integral of a function g starting at 1>0, can be recalled as formulated in [9].

Where Y =M (a,p,0)= with o>-1.

Definition 2.3. "*1/ (g)(7)= %J- ‘?_(t)ﬂ -dt ,such that this integral is the well-known Riemann improper
s t a—
A

I(o-p+1)
Br(c—a-pB+2)

From Definition 2.3, we obtain the following:

integral, ¥ =M (a,8,0)= , with 0<pg<1,and ¢>-1.

Theorem 2.4. "D/ " 7 (g)(zr)=g(r).for >n ,, such that g is any continuous function in the
domain of 17, .

Theorem 2.5. Suppose that 1 >0,0<a ,f <1, c>-1, and g is a continuous real-valued function

(RVF) on [4,x]Let ¥ be any RVF with the property: “*D* (7)=g(z),forall r €[4,x].

Then

Y617, (g)(x) =V (x)-V (4). (11)

The goals of our study with respect to the concept of the MK Volterra integral equation, which was put
forward in [17], must also be mentioned. It is therefore often provided as follows:

Q¢ dx
VW @ =g@+ [V @ W (V) (12)
0
Where V (7,x) is the integral equation’s kernel, W (x) is an unknown function, g(z) is a perturbation
I'lo- 1
known function, Q is non-zero real parameter, ¥ = M (a, ﬂ,a): (O- P+ ) , with 0<p<1,
pr (a —a—-fB+ 2)

and o >-1.

However, if V (7) =1, then Equation (12) is expressed as:
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Q7 dx
W ()= g(r)+§_([V (T, x W (x )W ,

which is the Volterra integral equation of the second kind.

3. THEOREMS AND PROPERTIES OF FRACTAL-FRACTIONAL ELZAKI TRANSFORM

A novel concept of fractal-fractional Elzaki transform was defined in this section; it is called the
Martinez-Kaabar fractal-fractional Elzaki transform in this study. From here on, we shall refer to it as the
MK Elzaki transform in all future findings. The MK Elzaki transform was similarly defined, and the

following attributes were listed:

Definition:3.1 Let that 0 <« ,8<1,0>-1,,and g :[0,00) — R is an RVF. Then, the MK Elzaki transform

of order « , g is known as

1 Latpl

Eylg@:p)]= 5 e ") (r)W T, ,(p).

provided that integral exists.

Theorem: 3.1. Let O<a,B<1, with a+pf-1>0,0>-1, and weR,p>0

F(a—ﬂ+l)
BT (c—a-f+2)
i- If f(r)=w then E, [0:p)]|=wp’

, So, we have

V=M (0:,,8,0')=

i-1f f ()=7' then E,, [z :p)]=p [ [‘I’ (a+ =11+
 r@ P!

w %P P
iii- If / (z)=e*“*") then E,, {e Y ] -_P

1-wp
) z_oz+[;‘—1 ) z_a+/;’ 1 C()p3
iv-If 7)=sin| —— | then E sinf —— |: =
1@ (‘P(oﬁﬂ—l)j MK{ (‘P(aﬁﬁ—l)j p} 110’0’

) Z_a+/7—1 ) Z_a+/i 1 p2
- If = ——— | then E — _|ip|=
v-1s@ CO{‘P(oHﬁ—I)J e Bux l:co{‘{’(a+ﬂ—l)] p} 1+’ p?

Proof:

a+/3 1

. ,0 P¥(a+p-1) 1) dr
1- EMK : ,0) J- )TZ—afﬂ
~ patpl ®©
— wp _pe p‘I’(a+ﬁ—l) — a)p2
0
Ta+ﬂ—l d
.. i _E ©p¥(atpl) () T
ii EMK|:T .p)]—\PLe (T )Tziaiﬁ
sy 4
_ P [* T p¥(a+p) T
__Io ¢ 2-a=f

T
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(aspo1)

1 mﬁ l) o - e

_ I: (a + ﬂllj ):I pjo e p‘{‘(a+ﬂ*1) I:IP(a + ﬂ_l):l(mﬁ—l) Tz"i::ﬂ
|: (05+ﬂ 1):|/z+/f] p) a+ﬂ]r(]‘+a+ﬁ])
Py S Lotpel Py
iii- £,, [e V@) } P.[ ¥ (arf) [ (Mﬂ])]fztf-p
@Bl (1_g
_P I P‘P(d(iﬂ T) Zdaf_ﬁ

P 1-ap) |° 2

=p|- P e PElrB) | P
1-wp 1-wp
o
s s

ol "Warpo) T W(arpon)
. . 0T e —e
iv- E sin| —— |: =F
MK|: [‘P(a+ﬂ—l)] p:l MK i
. w @ y @ 7@ ) 9 3
:i‘ EMK e Y(a+p-1) | e (1) || _ L p _ p _ 6(),02 .
2i 2i\l-iwp 1+iwp) l+wp
B At @

aspel “arpn) |, W(arp)
oT e +e
v- E cos| ——— |: =F
MK|: [‘i’(a-ﬁ-ﬂ—])j p:l MK )

a+f-1 a+p-1
i fUT+ - —i (UT+ - 1 2 2 2
E,x|e s +le a1 B p + p = pz 2
2\1-iwp 1+iwp) 1+op

Theorem: 3.2. (linearity of the MK Elzaki transform )

N |~

Letthat 0<a ,f <1, ,with a+8-1>0,0>~-1, f :[0,0)—> R are RVFs,and 6,6, €R .If E . [f () ](p)

F(O' -p+ 1)
Br(c-a-p+2)
E [Hlf (r)+0,g(7) ](P) =0E [f () ](P) +O0,E [g () ](P)
Where ¢, and g, are constants
Proof:

and E,, [g(7) ](p) exist,and ¥ =M (a,B,0)= then

Ew [0f @+02@ ()= E[ [0 @)+ 020 ] 7 Tff,ﬂ

Lapl Lap
P “Yiaisn dT P “Yiais dt
N CACIE ,z—a-ﬁﬂo G2 @]e " =5

Larh Lap
_6 pr o ® ow(arp )
AL ety o)L agaphe e

T
TZ—a—ﬁ

=0E [f (7) ](,0) +O,E [g (7) ](P)
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Theorem: 3.3 (Convolution theorem)
Let that 0<a ,f<1,, with a+B-1>0,0>-1, f :[0,0) > R are RVFs, and If E [f(r“*”")}(p) and

. ~ _ T(o-p+1)
E,x[g(2)](p) exist,and ¥ =M (a,B,0)= FT(o—a—p+2) then we have
Evelf *2] () =%EMK [ )]0 E e [ ()] ().
(14)
1 ’ a+p-1 a+p-1 dx
Where f *g)(r)z;jof(r Py s 12— -
(15)

Proof: By taking MK Elzaki transform to Eq. (13), we have:
R

P e | L (T aip o arpe dx dr

EMK[f‘*g](p)_EJ‘Oe g )[Ej‘of(f M —x ﬁl)g(x)xz—a/;:|z_z—aﬁ

yatp (@ by

_ P p(as) Lo T e T
=5le g(x)[\PLe £

a+p-1 _xa+,8—1) dT dx
a+p-1 I P

Now, consider the change of variables,

path pa+pl
_ P e Lo W@ arpy AV | dx
Eyelf *e)p) =3 ], e g(x)[q,Le b =

z_(H/;’fl —x a+p-1 — sz+/i—]

=%EMK [ @] (0)-E e [2(D](0)

Theorem: 3.4. Suppose that g(z) is continuous and “*D “Pg(r)is piece-wise continuous for all
F(O' -p+ 1)
Br(c-a-p+2)

and we have,

7>0.Then, E,, [MKD“’ﬂg(r)J(p) exists ,and ¥ =M (a,B,0)=

Epe ["D*g(0): p]= %Ta,ﬂ(p) ~ pg(0)

Proof: By taking Equation (13), we so

R
E [MKD a’ﬁg (7): p] = %J‘:e_m [ "D a!ﬁg (T)]Tz—:-_ﬂ

Applying the integration by parts, we have,

patpl Fa+pel

) iy Lo (e dr
Eye[*D ’”g(r):p]=P[e o l)g(r)] rglie M0
0

patp-l

_ L 2o p¥(es) dr
_p[O—f(O)]+$_[oe oY lg(r)THfﬂ

~Lr (p)-pg(0)
P

Corollary: 3.1. Assume that f (z), " D*’g(7),...., MKD(::)g (7) are continuous, and MKD(:;/; g(r)is piece-
wise continuous for all 7 > 0. Suppose further that g (), "*D*’g(7),...., MKD(:ﬂfl) g(7) are GFrFrEO. Then,
E .« [MKD“’”g (r)}(p) exists , is given by:

} 1 m—1 s «
E["DEl2():p] = les (p)‘kzopz F YD g (0)
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Hence, ** D%/ g(7) means the application of the MK «, 8 — derivative m times.

Theorem: 3.5. Assume that g is a GFrFrEO and continuous for 7 > 0. Then, we obtain,
1 ¢- dx
EMK |:§J.Of(x)xz—aﬂp:| :pEMK [f(x)p]

Proof: By taking Theorem 3.3, If we take g (2') =land E,, |(1): p] = p*from Theorem 3.1, our result

follows easily.

4. APPLICATIONS

In this section, the Martinez-Kaabar MK Volterra Integral Equation of the Second Kind may be solved
using the potent classical method of the MK Elzaki transform [17].

Consider the MK Volterra Integral Equation of the second kind:

Q7 dx
W ()= g(r)+§£V (T, x W (x )xz'—“'ﬂ ,

where V (r,x) is the kernel , W (x )is an unknown function , g(7)is a perturbation known function, Q is

a non-zero real parameter, and V (r,x)=V [r“*ﬂ’l —x‘”ﬂ’lJ ,and ¥ =M (a,B,0)= F(o=F+]) ,
Br(c—-a-p+2)
then it is named the «, 3 -difference kernel. So, we have
Q¢ d
W (t)=g(t)+Q[ =W |(z) =g(r)+¥.|.V (z,x W (x )xz_+_ﬁ, ,
0

(16)
By using the MK Elzaki transform on both sides of Equation (16), by taking Theorem 3.5 we get

[V @] (p)
Yol

p—QE
E [W (T)] (,0)[ ]: E [g (T)] (p)

E
Ep ¥ (r>]<p>=[ PEw [2(0](p) ]

pP=QE [V (@ ):| (»)

A using inverse MK Elzaki transform, we obtain
PE ik [g (T)] (p) . T}

p=QE i [V "™ ](p)

Problem 1: Consider the MK FrFr Volterra Integral Equation of the second kind:

(2r)572a72ﬂ 4 f . dx

W (7) =E; [ (17)

— 3—a-p _  3-a-p
W(T)_‘i’(5—2a—2ﬂ)+(3_a_ﬂ)\Pz£( x W () =7 -
(18)

Solution:

Appling MK Elzaki transform Eq. (18)

" (T) _ ( T)S—Za—Zﬁ N 4 j:(x 3a-p _13_(1_/} )W (x ) dx
Y(5-2a-28) (3-a-p)¥ x el

E\k [W (T)] (p)= pgr(z) —4p’E [W (ﬂ](p)
Taking inverse MK Elzaki transform, we get
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W () =sin| 2V
PN (s p)

Problem 2: Consider the MK FrFr Volterra Integral Equation of the
3(a+p-1) 1 T dx
Wr)=— "t L [(et P ety ()P
® I'(3(a+p)-2) ‘P;[( W) e
(19)
Solution:

Taking MK Elzaki transform Eq.(19)
[¥(a+p-1)] p°r(4
T'(3(a+p)-2)

Ey [V @) ()14 9% (a+ p-1) ] =

EMK [W (T)](P): “P((Z-F,B—l)szMK [W (T)](p)

[‘P a+pf— l]pF

( (a+p)-2)
. [‘{’ a+ﬂ 1] pF 1

E\x [W( )](p) ( ( +ﬁ) ) [1+p2M (0(,,5’70')(0‘+ﬂ_1):|
[¥(a+p-1)]TM) (| )

E i [W (T)] (p)=

r(3(a f)- ) ”‘[npzw(aw—l)]

Taking inverse MK Elzaki transform, we have

V@) ., T@[¥(asp-)]

W(r)= in( /¥ (a+B-1)c"""
® I'(3(a+p)-2) I'(3(a+p)-2) Sm( (axpl)e )
Problem 3: Consider the MK FrFr Volterra Integral Equation of the second kind:
3erA g dx
W(T)Z—l— .([W (X)W.
(20)
Solution:

Applying MK Elzaki transform Eq.(20)
|
EMK [W (T)](P) = _pz _;3a ’ I‘P(a +,3—1)PZ~EMK [W (T)](P)

E\x [W (T)](P)[1+p3a+'g’l\l’(a+ﬂ_1)] - p

-P
E [W (T)](P) = 1+p3a+ﬂ_l‘P(a+ﬂ—l)

Taking inverse MK Elzaki transform, we get
_(31)0,4/{71
w (T) = Y (a+p-1)
Problem 4: Consider the MK FrFr Volterra Integral Equation of the second kind:

) ,[a+ﬂ—l ,[_a+ﬁ—1 T a+ﬂ 1 _ a+ﬂ—1 dx
w (T) = SIH(WJ-Q-COS[W] Z'; [ a +IB 1) ]W (x )X 2-a-p >

(21)
Solution:
Appling MK Elzaki transform Eq.(21)

second kind:
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3 2 2

Ee [V @)(0) =Lt L 22 B 7 @) (0)

E, [W(r)](p){l‘p }’””

E [W (T)](P) =

l+p° 1+p* l+p

1+p° 1+p°

2

ol
I-p

Taking inverse MK Elzaki transform, we obtain

pap
w (T) —e Y(a+p-1)
5. CONCLUSIONS

This work defined the Martinez-Kaabar fractal-fractional (MK FrFr) MK Elzaki transform, which was
applied. Theorems and properties are crucial to this relatively new transformation, which can be found in
the second-kind MK FrFr Volterra Integral Equation. The study of the MK Elzaki transform was
successful in finding solutions.
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