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ABSTRACT

In this study we derive recurrence relations for the single and product moments of generalized record
values (GRV’s) based on the Power-Exponential hazard rate distribution. Additionally, these relations are
formulated for the moments of upper record value (RV’s). Furthermore, the study characterizes this
distribution by utilizing recurrence relations for single and product moments, conditional expectation,
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1. INTRODUCTION

The RV's hold significant importance in everyday life. People are often interested in various records,
including those related to sports, weather, crime statistics, economic trends and so on. Almost every
measurable phenomenon is systematically recorded. The concept of RV's was initially introduced by
Chandler (1952) as a model for analyzing successive extreme values within a sequence of independent
and identically distributed random variables. Later, Dziubdziela and Kopociniski (1976) expanded this
concept by applying it to a broader class of random variables, referring to them as k-th RV's.
Subsequently, Minimol and Thomas (2013) termed these as GRV’s, as the k —th term in the sequence of
ordinary RV's is also recognized as the k —th record value. By setting k = 1, one can obtain ordinary
RV's.

Let {X = 1} be a sequence of independently identically distributed (iid) continuous random variables
with distribution function (df’) F(x) and probability density function (pdf'). For fixed integer k£ >1 we

define the sequence {U'"',n >1} of k — th upper record times of {X Lo 1} as follows:
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U =1
UY) =min{j>U" X

n+l

> X

jij+k-1 UOUE +k-1 }

where X, denotes the j—th order statistics in a sample of size .

For k=1 and n=12,... we write Uy’ =U,. Then {U,,n>1} is the sequence of record times of
{X,,n>1}. The sequence {¥",n =1}, where ¥’ = X, is called the sequence of k —th upper RV's of

{X n 21}. Note that for k=1 we have Y" = X, ,n>1, which are the record values of {Xn N> l}

n?

(Ahsanullah (1995)). Moreover, we see that ¥,*) = min{X,, X,,..., X,} = X,, . Then the pdf of Y* and
joint pdf of Y and Y* are as follows:

n

Sy (xX) = [InF)]"'[F(0)] f(x), n>1 (1.1)
, (n—1)!
— k" I E m%& il _ I n—m-1
Sy oo (X, ) = - Dl(n—m _1)![ In F(x)] F) [In F(x)—In F(y)]
xX[FON' f(y), x<y, 1<m<n, n>2, (1.2)

where F(x)=1-F(x).
The various developments on record values and related topics are extensively studied in the literature
see; Balakrishnan and Ahsanullah (1995), Pawlas and Szynal (1998), Sultan (2007), Kumar and Khan
(2012), Minimol and Thomas (2013), Khan and Khan (2019), MirMostafaee et al. (2016), Athar and Fawzy
(2023).
Various probability distributions, including the Weibull, Rayleigh, exponential, and Gompertz, are
extensively utilized for analyzing lifetime data. While these distributions exhibit monotonic hazard rate
functions, they fail to adequately model bathtub-shaped hazard rate functions, which are frequently
encountered in reliability and biological studies. To address this limitation, researchers have introduced
extended versions of lifetime distributions that effectively capture bathtub-shaped hazard rates. These
modified distributions offer greater flexibility and improved fitting capabilities. In this context,
Tarvirdizade and Nematollahi (2017) proposed the Power-Exponential hazard rate distribution, which
integrates the power hazard rate function with the exponential hazard rate function, thereby preserving
the bathtub-shaped property. A random variable X follows Power-exponential hazard rate distribution
(Tarvirdizade and Nematollahi (2017)), if it's pdf is of the form
,(waui(eﬂ,])J

f(x)=(axﬂ+/1e“)e pey , x20, a, B,y,A>0 (1.3)

with df
,(Lx/?+l+i eﬂ,]))

F(x)=1-e " 7 , x>0, a, f,y, A>0. (1.4)
From (1.3) and (1.4), we have obtained

f0)=(ax"+2 —%xﬁ” +7-InF0))F(x). (15)
The relation (1.5) will be used to establish some simple recurrence relations for moments of generalized
upper record values from the Power-exponential hazard rate distribution.
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Some sub-models of power-exponential hazard rate distribution are as follows:

Table 1: Sub-Models of Power-Exponential Hazard Rate Distribution

Parameters Distribution

a B /4 A

- 0 - 0 exponential

- 1 - 0 Rayleigh

- 1 0 Linear Hazard Rate

- - - 0 power hazard rate
ul'o u—1 - 0 Weibull

e u—1 - 0 modified Weibull

0 - - - Gompertz

- 0 - - Gompertz-Makeham

2. RELATIONS FOR SINGLE MOMENTS

Theorem 2.1. For the distribution givenin (1.4) and 1<k <n, j=0,1,2,...
ayk
(B+D+F+2)
_ak
S (+BHD

{E(Yn(k))ﬂﬂﬂ _ E(nﬂﬁ) j+/3+2}

O R T A e R T AR R A A G
(+D
oy B - B - B 1)
Proof. From (1.1), we have

Ak
1

EOLY = s [ m POl (POl e 2)

From (1.5) and (2.2), we have
ak” J-w

JHBT_ Il n-1r k
T xP[-InF(x)]" [F(x)]" dx

E(y(k))j —

0

+

AK" = T 1n TN T E (T e ay k" P B 1 T T T K
Fon b ¥ @I IR de— 50 [T o P [F 0] s
+1Z(_];I:xj[‘1n17 (0)]"[F (x)]" dx. (23)

On Integrating (2.3) by parts, treating x’7s for integration and rest of the integrand for differentiation and
simplifying, we get

; k A ‘
E Y(k) J :(Z— E Y(k) J+B+ —E Y(k) jp+
O =Gy PO S
+£{E(Yn(k))j+l _ E(yﬂ(ﬁ))jﬂ} _ a]/k {E(Yn(k))j+ﬂ+2 _ E(Yn(fl))j+’3+2}
G+ (B+D(j+B+2)
-|-.n_7/{E(Yn(fl))j+1 —E(Yn(k))jﬂ},
+D

On rearranging the terms of the above expression, we get the required expression.
Remark
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i) For k=1 (2.1), the recurrence relation for single moments of upper record values from the Power-
exponential hazard rate distribution has the form

a}/k Jtp+2 J+p+2
B+ ) E e P
__ ok A _ jepiy K = ol
- (j+,3+1) {E(XU(n)) E(XU(n—l)) } ( ){E(XU(n)) E(XU(n—I)) }

( 1) U(n+l))/+1 E(Xu(n))/+l} E(Xu(n))/

i) Setting f=A=y=0 in (2.1), the result for single moments of generalized record values is deduced
for exponential distribution as obtained by Balakrishnan and Ahsanullah (1995).

iiiy Setting A=y=0, f=1 in (2.1), we deduced the recurrence relation for single moments of
generalized record values from Rayleigh distribution as established by Khan et al. (2015).

iv)  Setting A=y =0 and replace #, @ by g—1 and 16 respectively in (2.1), we deduced the result
for moments of generalized record values from Weibull distribution with shape # and scale &
parameters as obtained by Pawlas and Szynal (2000).

v)  Putting A=y =0 in (2.1), we get the recurrence relation for single moments of power hazard rate
distribution as established by khan and khan (2019).

vi) Putting & =0 in (2.1), the result for single moments of generalized record values is deduced for
Gompertz distribution as established by Minimol and Thomas (2014).

vii) Setting =0 in (2.1), we obtained the recurrence relation for moments of generalized record

values from Gompertz-Makeham distribution.

3. RELATIONS FOR PRODUCT MOMENTS
The joint pdf of Y*) and Y is given by
Frio o (5.3 = m[—ln Fo]™ %{mﬁ () -InF ()]
X[FO)' f(y), x>y, 1<m<n, n>2. (3.1)
Theorem 3.1. For the distribution givenin (1.2)and k>1, 1<m<n, n>2,i,;=0,1,2,...
ayk
(B+DE+F+2)
=B )= EOD T Y T
(i+p+1)
Ak

( )

{E[0) 2 (i) 1= E[(, )2 ()]

YO ) 1= BT ()

i+l

1= ENY,O)" (1) 1 - BN, (1) ] (3-2)

( ) m+l1

Proof. From (3.1), we have

0y (7Y ma S (x)
EY 0 1= 2 )r(n j [ 'y [-InF(x)] oo

x[InF (X)—IHF W™ F )T f(v)dxdy. (3.3)
From (1.5) and (3.3), we have
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E[(Y”(lk) )i (Yn(k) )j ] — r( )F(n m) I j 1+/>’ lnﬁ(x)]m—l [lnﬁ(x) _ lnF(y)]nfmfl

%I [ &y FInF @I InF @) ~InF ()]

<[ F ()] _ ayk” Hpey, m-1
FON fsdy = — o, [, =y - F (o)
[~InF(x)]"

N e _ - n-m-1r k L iy
(P~ FOI ™ FON fOsdy s oS [°] y

x[InF () =InF ()" [FO)I £ (y)dxdy. (3:4)
On Integrating (3.4) by parts, treating x'’s for integration and rest of the integrand for differentiation and

simplifying, we get

E@Y") = —ﬂ D B @ 1= Bl ) T
s LBy ()1 L) () T
)

x[F(W)]“ f(y)dxdy +

B ayk
(B+DH(i+ 4 +2)

+ LB (Y - BN (1) ]
@@+1)
On rearranging the terms of the above expression we get the required expression.
Remark
(i) For k=1 in (3.2), the recurrence relation for product moments of upper record values from the
Power-exponential hazard rate distribution has the form

@ ]/k i+f+2 J1_ i+f+2 7
B+D(I+p+2) {E[(XU(’")) (XU("*I)) ] E[(XU(nH)) (XU(,H)) ]

) % (X )™ (X ) 1= ENX )™ (X)) ]
Ak

( )

L) () 1= E,E) ™ (V5]

U(m))l+1(XU(n 1)) ] [( U(m—l))i+1(XU(n—1))j]

( 1) o) Xy 1= El(X )™ X)) T = Bl X ) (X)) -

(i) Setting f=A=y=0 in (3.2), the result for product moments of generalized record values is
deduced for exponential distribution.

(iii) Setting A=y=0, F=1 in (3.2), we deduced the recurrence relation for product moments of
generalized record values from Rayleigh distribution.

(iv) Putting A=y =0 in (3.2), we obtained the recurrence relation for product moments of power
hazard rate distribution.

(v) Putting @ =0 in (3.2), the result for product moments of generalized record values is deduced for
Gompertz distribution as established by Minimol and Thomas (2014).

(vi) Setting f=0 in (3.2), we obtained the recurrence relation for product moments of generalized

record values from Gompertz-Makeham distribution.
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(vii)  Setting A=y =0 and replace #, @ by p—1 and 6O respectively in (3.2), we deduced the
result for product moments of generalized record values from Weibull distribution with shape ¢ and

scale & parameters.

Table 2: Moments of record values

a=1,8=15y=2 a=2=15y=2
n A=2 A=2

E(X) E(X?) | E(XY) E(X") E(X) E(X*) | E(X’) | E(XY
1 0.29201 0.12679 0.067263 0.04064 0.28636 0.12128 0.06265 0.036847
2 0.48778 0.28310 0.18421 0.13041 0.47663 0.26970 0.17098 0.11794
3 0.63221 0.44136 0.33185 0.26468 0.61682 0.41981 0.30770 0.23930
4 0.74584 0.59353 0.49768 0.43596 0.72734 0.56442 0.46160 0.39454
5 0.83923 0.73757 0.67402 0.63710 0.81848 0.70173 0.62582 0.57755

a=2,=25yr=35 a=3, =25 yr=35
n A=3 A=3

E(X) E(X?) | E(XY) E(X") E(X) E(X*) | E(X’) | E(XY
1 0.18828 0.05204 0.01743 0.00661 0.18801 0.05185 0.01732 0.00655
2 0.31142 0.11433 0.04675 0.02069 0.31079 0.11381 0.04640 0.02048
3 0.40047 0.17587 0.08274 0.04112 0.39950 0.17496 0.08207 0.04066
4 0.46944 0.23388 0.12225 0.06651 0.46817 0.23256 0.12118 0.06573
5 0.52544 0.28789 0.16344 0.09568 0.52391 0.28618 0.16196 0.09451

4. CHARACTERIZATION
Theorem 4.1. Let k and j are integers such that £ >1, j = 0. A necessary and sufficient condition for

arandom variable X to be distributed with pdf given by (1.4) is that
ayk
(B+D+L+2)
_ak
OEY R

EXOY 2 —EXE) )

Q)Y - ERY Py + LK m oy - By
n n (j + 1) n n

SESE@E) By - BN @)

(j+1)

Proof. The necessary part follows from Theorem 4.1. On the other hand if the recurrence relation (4.1) is

satisfied, then on using Khan et al. (2017), we have

+

x/ [-InF(x)]"'[F (x)]" dx

0

nyk" O B _n T nlr k :/Ikn ®
) jox [~In F ()] '[F (x)]“ dx o j

ak" ¢ o Ko o
+%0x P[-InF (x)]"'[F (x)] dx—%jox [~InF ()] [F ()] f(x)dx

LM“’ JHT 1 TN T 7k B
+ e D) [ =i F ol [F ()] f(x){ InF(x) k}dx. (4.2)

let
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[
h(x) == [=InFGT'LF 01" (43)
Differentiating both the sides of (4.3), we get

h (x)=[~InF ()] [F (0] f (x){— In F(x) —ﬁ}

nyk" J4p n-1 /Ikn it T n-1p = k
GaDrimh * ;= Pl IF o) dv == o [ ¥ -l F (o)l [F(x)] dx
s D PP F ) e [ Pl ) (s
k—m J' xR () (4.4)
TG+ Drm Y
Integrating by parts last terms of (4.4) in the right hand side and using (4.3), we find that
k/‘l

n— f( ) B aj/ P+l bl
x[=InF(x)]""[F(x)] { —ax” —A+—"—=x"" —y[-InF(x)];dx =0.
1”(n)'[ F(x) (B+1)
(4.5)
Now applying a generalization of the Miintz-Szasz theorem (see for example Hwang and Lin, 1984) to
(4.5), we get
AC R S J./ A

ax

F(x) B+D
Which is the characterizing equation for the pdf as given in (1.3).

P4 y[-In F(x)]

Hence the sufficient part proved.
Theorem 4.2. For fix a positive integer k=1 and 7, are non-negative integers. A necessary and

sufficient condition for a random variable X to be distributed with pdf given by (1.3) is that
ayrk
(B+D(+p+2)
C(k i+[+ j i+ [+ j
=m{E[(Yn§k)) P @I 1= Bl ()T
Ak (F)Ni+L (k) y (F)\i+L oy (R)y
N (¥, )" @, 1= E[(Y,- )" (V,5) 1

Y ){E[(Y”ﬂ)’”(Y(“)] E[Y,)" () 1y - EIY,) (¥, ) 1. (4.6)
1+

Proof. The necessary part follows from Theorem 2.1. On the other hand if the relation in (4.6) is satisfied,
then to prove the sufficient part, we have consider

E[(Y“”)’“ () 1= Bl 0]

m+1

(B[ 29 1= ELY )2 (x 1))

i+l m -1 f( ) n—-m-2
—F(m)r(n " [ [« [-InF(x) ()[lnF(x> InF(y)]

<[FII f (y){ln F(x)=InF(y)-

(n—m—=1[-InF(x)]
- }dxdy 4.7

let
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h(xo y) = l[_ lnF(X)]m [lnF(x) - lnF(y)]n—m—l
m
Differentiating both the side of (4.8) with respect to X, we get
b = F @I L i F ) - F )
Ox F(X)

x{lnf(x)—lnﬁ(y)_ (n=m —1)[—1nf(x)]}
m

From (4.7) and (4.9), we have
E[(Y,0) (@) 1= El(,D"™ (1,7)]

m+1
k" =) in O T k-1
= U —h(x,y)dx; y'[F dy.
Y~ [, {jo X h(x,) x}y [F()17 £ )y
Integrating (4.10) with respect to X and using (4.8), we get
E[(Y,)" () 1= El(Y,) ™ (7,)]
_ @+DK"

Fm+)(n—m)

J, [+ - F @) InF @)~ nF ()]

X[F ()] f(p)dxdy .
and
E[(Y,)" (V) 1= E[(V, )" (7,7)]
_ k! RS BN IR ) m—ZM Tl 1n T n—-m-2
= oDy b F Y e E S F @)= F )]

(n—m—l)[—lnf(x)]}dxdy.

[FO' f (y){lnf (x)—InF(y)-
let
h(x,y) = L[—ln F(O)]" ' [InF(x)-InF(y)]"™"".
(m—1)
Differentiating both the side of (4.13) with respect to X , we get
9 g2 )
M@y =[-nF ()] 7o) [In F(x)—InF ()]

x{lnf(x) ~InF(y)- (n=m _1)[_1111]?()6)]}
m—

From (4.12) and (4.14), we have
E[(Y,)" (5 1= Bl (8]
n-1
“ror o b { [/ %h(x,y)dx}yf (FON F )y
Integrating (4.15) with respect to X and using (4.14), we get
E[(Y,)" @) 1- EL(¥, )™ (1,5 ]
(@ +Dk"!
T L) (n—m)

.[ow .[oy X'y [-InF(x)]" ' [InF (x)-InF (y)]"™""

x[F ()] f(»)dxdy .

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Using (4.11) and (4.16), (4.6) can be written as

k! ey = melr. T =/ N—m=lr - k-
FomE—m b b2 EmF@I I Fe) = F ) (F I/ ()
x{—%+axﬁ+/l (;x 1)+7[ 1nF<x>]}dxdy (417)

Now applying a generalization of the Miintz-Szasz theorem (see for example Hwang and Lin, 1984) to
(4.17), we get

a p—
& —axf 4 A—— L +y7[-In F(x)]
F(x) (B+1)
Which is the characterizing equation for the pdf as given in (1.3).
Hence the sufficient part proved.

Theorem 4.3. Let X be an absolutely continuous non-negative random variable having df F(x), with

F(0)=0 and 0< F(x)<1 V 0<x <00, then

E| -2y e @)= x| = —E ety K err 1T
pF+1 4 f+1 4 k

if and only if

m

(4.18)

A By Ao rx
7(ﬂ+l e ”J
F(x)=1-e ! , x20, a, B, y, 1>0.
Proof. From (1.1) and (1.2), we have

E({ n I(Y‘“)ﬁ*wy(e” 1)}\<Y,,5“)=xj

kT Iw{ @ yﬂ+l+£(ew_l)}(_ln§(y)]"(f(y)j fO) g
F-m*> |(B+D" 7 Fw) (F) F

e

By setting z = —=-—=
F(x) _(ﬂo-:l B+l l(e,/x 1)j

(4.19)

in (4.19), we have

e

A IR )y _
E({ﬂH(Yn ) +7(e 1)}\(Ym ) XJ

~ e a 241 i e Lo Lyl ke g v 21 Ak g
_F(n—m)({(ﬂ+l)x +7/(e 1)}_[0( Inz) d .[0( Inz) d].

(4.20)

In view of Gradshteyn and Ryzhik (2007, p-551), note that

1 1 e r
I(—lnx)” L dge =~ u>0,0>0. (4.21)
0 U,U
Using (4.21) in (4.20), we obtain the result given in (4.18).
To prove the sufficient part, we have
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kT Iw{ 5 yﬂ+l+i(e”—1)}[1n17 @)~ F ()™
y

I(n—m)* | p+1
x[FO)I™ f 0y =[F ()] g, (%), (4.22)
where
a  pga A, n—m
X7 +—=(e" =D+ :
p+1 14 k
Differentiating both sides of (4.22) with respect to X , we get

SN AC)) = A g A s
F(”—m—l)F(x)L{/)’Hy e 1>}UHF<x> InF(y)]

X[FOI™ f()dy =g}, IFOI +kg,,, (OIF )] f(x)

gs\r(x):

—k g, OF O] f(x) =g, OIF 0] —kg,,,(OF ] f(x).
Therefore
S _ g in(X)
F(x) k() = &, ()]
=ax’ + e, (4.23)
where

g m(X) =ax’ + e

1
gn\m+1(x)_gn‘m (X) = —z.

Integrating both the sides of (4.23) with respect to X between (0,) ), Hence the sufficiency part has

proved.
Theorem 4.4. Suppose that X be an absolutely continuous (with respect to Lebesque measure) random

variable with the df F(x) and pdf f(x) V 0<Xx <o, suchthat f'(x) and E(X | X <x), exist
forall x, 0 < x < o0, then

E(X|X <x)=g(x)n(x), (4.24)
where
X
7 =L
F(x)
and
[ i xﬂ+l+i(e7"—l)]
By ( a umu&(w,l)]
X € © LB+ ¥
xX)=— + e du
g0 ax? + e’ ax? + de” -[0
if and only if

s 4
J(x)=(ax"+1e)e , x20, a, g,y A>0.
Proof. From (1.3), we have

gy

E(X|X3x)=$jo"u(auﬂ +/1e”)e(ﬁ“ ’ ]du. (4.25)
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Integrating (4.25) by parts, treating (o x” + le’™)e

,(Lxﬁ” +i(67-¥,1))

prr for integration and rest of the

integrand for differentiation, we get

| Lxﬂ+l+£(eyX_1)
E(X|X<x)=——1_xe (45 )
F(x)

G i Ao -1)J
¥

X _(7
+J‘ e B+
0

du;. (2.26)

Now dividing and multiplying (4.27) by f'(x), we obtain the result as given in (4.24).

For proving sufficient part, we have from (4.24)

[Juf)du =g f(x). (4.27)

Differentiating (4.27) on both sides with respect to X, we find that

xf (x) = g'(x).f (x) + g (x).f"(x).

Therefore,
J} ((x)) _ _Eg §X) [Ahsanuallah, et. al (2016)]
X g(x
1 /-1 7x
L) (gt 4 gy S HA7e (4.28)
f(x) ax” + e
where

g'(x) =x—g(X)(—(axﬂ + e+ ofx"" +Aye” J

ax” + e

On integrating (4.28) both sides with respect to X, we get

& g, )

f(x)=Clax” + Ae“)e(ﬂ“ 7

Further, To obtain the value of C (constant of integration), we have used the property of pdf, note that

j: Fx)dx=1.

Thus
a A .
1 - | Pl ] 1
Ezjo (ax” +2e" e [ﬁ” T = —,
e
which proves that

ixﬂ‘*l +i(e”—l)

f(x)z(ozxﬁ+/7,e”)e[ﬂ+l 4 j x>0, a, B, 1>0.
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