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Abstract: We analyze an MIX1, MI*21/G,,G,/1 queue with two classes of non-preemptive priority service
based on working breakdown, repair, immediate feedback and Bernoulli vacation. The server may subject to
random breakdown with parameter «, during high priority service (type I), then the server will complete the
service for current customer at a slower service rate compared to the regular service rate. On the other hand,
during low priority service (type II), it should go for repair immediately. After the completion of each high
priority service, there are two choices. First, the server can go for vacation with probability 8, secondly, its
serves the next customer which has the probability (1 —6). In case of customer dissatisfaction after
completion of high priority service, immediately they receive service again without joining queue with
probability r, or else the customer gets an option to discard, which has a probability of (1 — 7). We use the
established norm, which is the corresponding steady state results for the time dependent probability
generating functions. Along with that, the expected time of wait for the expected number of customers in the
high and low priority queues are computed. Numerical results along with the graphical representations are
shown elaborately.
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1.INTRODUCTION

Queueing models have attracted attention of a lot of researchers because of their applications in day-to-day
systems. For instance, a common application which is being mentioned in most of the papers is, when a computer
system gets an unpredictable number of failures. Now, we can model it as a queueing model in which the servers
are designed for unpredictable breakdowns even when a customer is being served.

Takacs [15] introduced the model Bernoulli feedback queue. An immediate feedback is alternative approach to the
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concept of feedback developed by Kalidass and Kasturi [5]. Choudhury and Kalita [3] studied M /G /1 queue
with heterogeneous service, optional repeated service subject to server breakdown and delayed repair. Ayyappan
and Shyamala [1] investigated an M* /G /1 queue with feedback, breakdowns, vacation under Bernoulli schedule
and setup time. Saravanarajan and Chandrasekaran [13] extensively discussed M /G /1feedback queue with two
types of services, Bernoulli vacation and random breakdown. The updated reference on queue interruptions can be
found in Krishnamoorty et al. [7].

Queueing system with working breakdown was introduced by Kalidass and Kasturi [4]. This concept is not the
same as working vacations. Kim and Lee [6] studied M/G /1 queue with disasters and working breakdowns and
an M/G /1 retrial queue with disaster under working vacations and breakdowns are extensively discussed by
Rajadurai [12].

Madan [9] studied a priority queueing system with service interruptions and an M /G /1 queue with preemptive
priority service with optional vacation was investigated by Baskar and Palaniammal [2]. Senthil Kumar et al. [14]
developed a priority retrial queue with two classes of MAP arrivals using matrix analytic method. Recently,
Krishnamoorty and Manjunath [8] studied about priority queueing system where the feedback customers are
considered as the low priority customers.

We study single server queueing system subject to working breakdown, repair, immediate feedback and Bernoulli
vacation. We assume that after the completion of each high priority service the server can take a vacation and also
assume that the high priority customer has an option of getting immediate feedback, if dissatisfied with his
service. Further, we also consider the working breakdown during the high priority service, which means that the
server may breakdown, but the service does not stop. Here the server will complete his service at a slower rate and
after completing the service of the current customer the server will go for repair.

The paper is arranged as follows. The mathematical notations and the definitions are mentioned in section 2, the
equations defining the model and the time dependent solutions are mentioned in section 3. The steady state results
are obtained in section 4. The expected queue length and expected waiting time are derived in sections 5 and 6,
respectively.Few particularcases are mentioned in section 7 and in section 8, some numerical results and their
graphical representations are also presented.

2.MODEL DESCRIPTION

2.1 Mathematical Description

1) High priority and low priority customers arrive at the system in batches of variable size in a compound
Poisson process. Let A,c;dt(i = 1,2,3,...) and A, ¢;dt(j = 1,2,3,...) be the first order probability that a batch
of i and j customers arrives at the system during a short interval of time(t, t + dt), where 0 < ¢; < 1, X%, ¢; =
1,0<s¢g < 1,23-‘;1 ¢; =1, andA, > 0,4, > 0 are the mean arrival rate for high priority and low priority
customers entering into the system. Note that the low priority customers will be served only when there are no
high priority customers in the queue. Consequently, high priority customers have a non-preemptive priority over
the low priority customers.

2) The customers under the high and the low priority service are looked by a single server on a first in - first out
basis.

3) Our next assumption is that as soon as the completion of each high priority service takes palce, the server can
take a vacation of random length with probability 8for which case the vacation starts immediately, or else, with a
probability of (1 — 6) it may serve the next customer, if any.

4) With the completion of a service for the high priority customers, if they are not satisfied with his service,
they get the service immediately without joining the queue with probability r or can exit the system with
probability (1 — 7).

5) After return from the vacation, the server starts serving the customer accordingly, if any. The server waits for
new arrivals in case, there are no customers.

6) The system can breakdown at any point of time during the service and the breakdowns can occur according to
a Poisson stream which has a mean breakdown rate of @ > 0. During the high priority service, the server will
complete his service at a slower rate compared to regular service rate (uz (k) < yy (x)), after that it will go for
repair. On the other hand, during low priority service, the server stop his service immediately and goes for repair.
7) The stochastic processes are considered to be independent of each other.
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For a steady state, we assume that B;(0) =0,B;(0) =1,V(0) =0,V(0) = 1,R(0) = 0,R(0) =1 are
continuous at k =0 (i = 1,2,3).

2.2 Definitions
Let

* N, (t) represent the high priority queue size at time t.

* N, (t) represent the low priority queue size at time t.

» BY(t),i = 1,2,3 be the elapsed service times of the high, low priority and working breakdown services
respectively.

 VO(t) be the elapsed vacation time at time t.

e R%(t) be the elapsed repair time at time t.

* Y(t) denotes the server state at time t, given by

0, iftheserverisidle;

1, iftheserverisbusywithhighprioritycustomers
duringregularservice;
2,iftheserverisbusywithlowprioritycustomers
duringregularserviceperiod;

3, iftheserverisbusywithhighprioritycustomers
duringworkingbreakdownperiod;
4,iftheserverisonvacation;

5, iftheserverisunderrepair;

Y(0)=

The high and low priority service time, working breakdown service time, vacation time and repair time all follows
the general (arbitrary) distribution and the notions used for their Cumulative Distribution Function (CDF), the
probability density function (pdf) and the Laplace transform (LT) are given in table 1.

Table 1: Notations

Server state CDF pdf LT Hazard rate
High priority service B, (t) b, (t) B, (s) (%)
Low priority service B,(t) b, (t) B,(s) U, ()
'Working breakdown service B;(t) b;(t) B, (s) Uz (k)
Vacation V() v(t) V(s) y(x)
Repair R(D) r(©® R(s) n()

Next, we define the probability I,(t) = Pr{N;(t) = 0,N,(t) =0,Y(t) =0}t >0
and probability densities,
P (i, t)dic = Pr{N; (t) = m, N, (t) = n,Y(t) = 1;k < BX(t) < k + dx},
(2) ) (1, t)dk = Pr{N,(t) = m,N,(t) = n,Y(t) = 2;k < BY(t) < k + dx},
(1) ) (k,)dk = Pr{N,(t) = m, N,(t) = n,Y(t) = 3;k < BY(t) < k + dx},
m_n(ic, t)dk = Pr{N,(t) = m,N,(t) = n,Y(t) = 4,k < VO(¢t) < k + dk},
R (16, t)dic = Pr{N;(t) = m,N,(t) = n,Y(t) = 5,k < R°(t) < k + dk}
for k >0,t >0, m,n=0.

3.EQUATIONS GOVERNING THE SYSTEM

Here, we construct a set of Kolomogorov forward equations using the supplementary variables technique as
follows:

d 0
e P(l) (x, t) + P(1) ) =—-(A + 4 +a +u1(K))P(1) )
+(1 = Omo)An Xi21 P, rfll)m('f £) + (1 =804 P(1 (K, 1) (1)

mn—j

~ 2 p® (i, 1) + P(Z) ) (6 t) = —(A + A+ @+ ()P (16, £)
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+(1 = 8,04, 2™, ;PP () + (1= 8,04, X%, ¢ PP _ (i, t) 2)

m—in jljmn}

4] 4]
an,n(K, t) + ﬁVm,n(K, ) =—(An + 4 + v, (K, t)
+(1 - é‘mo)lh Lrgl CiVm—i,n(K' t) + (1 no)ll Z} 1 j mn j(K t) (3)

Q“> K, t) + Q% (x, t) = —(A + 4 + 13(1))Q5) (1, t)

+(1 B M CQuin (6 8) + (1= 8,002 X1y Q0 (i, ) )
0 0
aRm,n(K' t) + aRm,n (K' t) = _(Ah + Al + n(K))Rm,n (K' t)

+(1 - 6m0)lh Z:Zl CiRm—i,n (K, t) + (1 - 671.0)/11 Z?=1 Cij,n—j (K, t) (5)
d @
S0 = ~Chy + 2010 + (= )1 =) [ B 06 O

+ 17 Ry (e, Opp () dic + [ Voo (e, )y G dic + [ Roo (e, (i) dic ©)
Boundary conditions at ¥ = 0,
P2 (0,8) = SnoAnCmsro(t) + 7 f P (e, )y (1) dlic + f P2, (6, Oy () drc

0
+@A =) —7) [ B, G0 O (0 dic + [ Vi gy (k, Oy () die

+ [ Risan (6, ON (1) dic ©)

P2(0,6) = Aycnyalo(®) + (1 — )1 — 1) f Ponys (6, )ty () dlrc

+ 1 oz (16, 0t () dlic + [ Vg g G, DY ()i + [ o (6, ) () dic (8)

Vi (0,8) = 8(1 = 1) [ PSo (16, )y () dlic 9)
Q4n(0,6) = a [ PS) (i, t)dxc (10)
Rnn(0,6) = [ Q) (6, s (k)i + a [ B (1, t)dc (11)

The initial conditions are,
P(0) = P2(0) = Q1. (0) =V (0) = Ry (0) = 0 and Ip(0) = L;m,n > 0. (12)

The Probability Generating Functlon(PGF) of this model is

Ak, t,z,) = Z 2P A (6 t); Akt z,) = Z 7 A G t);

A, t, 2y, 24) = Z Z Z0' Zf A (K, £)

m=0 n=0
where A = P, P2, QM V, R. Which are convergent inside the circle given by|Zp| <1,|z4| < 1. Bytaking the
Laplace transforms of the equations (1) to (11) and solving these equations, we get,

_(1)(1{ s, zp,zq) P (O,s, Zy, zq) [1 -B, (¢1(s, Zp, Zq))] e~ 1(szpzq)r (13)

P (K' S, 2p,2q) = P (0'5' Zp, 2g)[1 — By (i (s, Zps Zq))]e_‘pl(s'zp'zq)'c’ (14)

6(1)(1@ 5.2, Zq) _ 6(1)(0' 5.2, Zq) [1 ~B, (¢2(s' z, Zq))] e~ b2(szpzg)r (15)
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V(x,s,z,2,) =V(0,s,2,,2,) [1 (4)2 (5.2, q))] e~ P2(szpzq)e, (16)
R(x,s, zp,zq) R(0,s, zp,zq) [1 - 4)2(5 zp,zq))] e~92(s2pzg)x (17)
(1) _ 1-By ¢'1(Szp Zq)
(0,5,2,,2,) = aP' (O,s q)[ o) (18)
- —) - — B1($1(5, 2. 2,))
R(0,5,2y,7,) = aP (0,5,2,,2,)B3 (¢, (s, zp,zq))[ ¢1 (s'lzp' Z:) 2
—(2) 1-By(¢1(s:2p.2q))
+aP, (0,s,z, q)[ o1 oamze) (19)
V(0,52 2) = 6L =T)P (0,5, 25, 2,)B, (1 (5,25, 2,)) (20)
e 1-B1 (91 (s.2)
D05, zq) — P (0,5,2,) [T))] e
— —( — - §1(¢1(5' Zq))
R,(0,s, = aP 0,s,z,)B S, _—
0( Zq) 0 ( Zq) (lpZ( Zq))[( ).(p (S, Zq)
1-B, 1p1 S,Z,
+aPy (o, 5,24) [ wl(szq)q i (22)
Vs(0,5,2,) = 61 )Py (0,5,2,) B, (¥:(s5.2,)). (23)
.. =@ =)
However, by definition P " (0, s, Zp,Zq) =P, (0,s, Zq),where
Pi(5,29) =+ 4[1 - C(zg)] +
Y2(5,29) = Ap + A4i[1 = C(24)]
G1(5,2p,2q) = A[1 —c(Z)] t A4[1 - C(z)] + a
$2(5,2p,2g) = Ap[1 = c(2p)] + 4, [1 = C(2,)]
using equations (13) to (23) in (7) and (8), we get
—(1) — 1- El(‘l’l (s Zp, Zq))
P °(0,s,z,, - +(1-6)(1-n]B ) Zy, -
©0,5,2, Zqz{zp [z, + ( 3 YA =1)]B1(¢: (5,2 Zq_)) af 515,297
X B3(¢, (s, Zp, Zq))Rg‘l)’Z (s, Zp, Zq)) =01 —7)B1(d:1(5, Zp) Zq))V(¢2 (s, Zp, Zq))}
— —(2 — —
= 1 C(z)To(s) + Py (0,5,2,)(B, (1(5.2,,2,)) = B, (1 (5. 2,))
1-Ba(¢1(s.2p.2q) ). — Y1
+a[ﬁm(¢z(a Zp,7q)) = [%]R(wz(s z9))}
) — Y1
05,2 (9B 01 5.20) + B 2 ), 5,2,)
—0(1 = 1By (1 (5, 2))[1 = V(W2 (5,2))]} (24)
—(2) — 1-B l,b(s,z) —
PO2 (O, s, Zq) zy — B, (1,[11(5, Zq)) —a 1;1((5'1Zq) q ) R (d;z (S, Zq))
- —(1) — “B1(¥1(s29)
= 1o 2 Ta(6) 4 Py 0.5, 2)(C1 By 5, 7)) + e
X B3 (25, 29))R(2(5,24)) = 0(1 = 1) By (Y1 (5, 2g)) [1 = V(W2 (5, 2, )]} (25)
We have to solve the equations (24) and (25). Letting z, = g(z,) in (24) we get,
{ ARC(aENTo()+Ps (0:52q){F2(01(5.2)-F2(W1(5.24))
_ AP RO R (0, (s.2q)) -l e s AR (2 (570)))
P(()l) (O, S, Zq) = ' 1020 - : gll((l;f?s).zq))R . (26)

{(1—r>El(¢1(s.Zq)) +aE3(wz(s.Zq))[W1§1(wz(s.Zq))}
~0(1-)By (1 (52D 1T (5.29))]
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Substituting (26) into (25) and (24)

{1-02(s.2¢)To(s)}

—@
Po (O'S'Zq) = _ 1-B2(01(s2q)) @D
zq—Bz(ol(s,zq)) T@) (oz(s zq))
1= (5,2,2)To () 4P (0,5,20) (B2 (91(5.2.29)) B2 (01(5.29)
1-B2($1(s2p.2q)),= 1-B2(01(529)),=
5O Gy IR@257pa) - o SR (02 (5.2} 28)
1-B1($1(52p2q))

P (0,52, 2,) =
{

Zp—[ZpT+(1—9)(1—T)]§1(¢1(S'Zp'Zq))—a[W] }
XB3 (2 (5.2p,2q))R ($2(5.2p,24)) =0 (1-1)B1 ($1(5,2p.2¢))V (P2 (5.2p.2q))
Theorem 1 The probability generating function of the Laplace transforms of thenumber of customers in the high

and the low priority queue while the system was in regular service, working breakdown service, repair and
vacation is given by:

B (5,2,20) = P (0,5,29,2) [%)”] 29
PP (5,2,,2,) = P (o, 5,2,) [“L)”] (30)
0 omm) = P O | [T e
R (5 20) = 0P (05,2328 (5,2 2)) | — l;((“) )| |1 ZZ(Z: ( & 2))

+aPy 052 [ S ) @
V(5,20 24) = 0~ 9P (0,5, 2 70 (45,7 72)) [M] 33)

4.STEADY STATE ANALYSIS: LIMITING BEHAVIOUR

Now, we study the steady state probability distribution for our queueing model. By applying the well-known
Tauberian property,

lirr(}sf(s) = limf (¢),
S— —00’
The normalizing condition
POMLD + PP +V(AD+QVAD)+RAD+, =1
We get the probability generating function of the queue size irrespective of the state of the system.

Nr(zp,zg)
W, (2p, 2g) = 5+

(34)

Dr(zp,zq)
where,

Nr(zp,zq) = —IO¢1(Zp,Zq)01(Zq)¢2 (Zp,Zq)f(Zp,Zq) + PO(Z)(O,Zq){f(Zp,Zq)j(Zp, Zq) + g(zp,zq)k(zp,zq)},
Dr(zp, 2q) = $1(2p, 2¢) P2 (2, 24) k (2, 24),

f(2p,24) = [1 - B, (‘l’l (Zp'zq))] $2(2,24) + [1 —Bs (4’2 (2, Zq)) R (4’2 (2, Zq))]
+0(1 —7)¢, (Zp, Zq)El (4’1 (Zp, Zq)) [1 -V (4’2 (Zp, Zq))],
9(2p.24) = [1 ~B, (¢1(Zp'zq))] $2(2p,2,) + [1 _ﬁ(‘l’z (Zp'zq))]'
j(Zp'Zq) =¢; (Zp' Zq)”l(zq) [Ez (4’1 (Zp' Zq)) ~ B, (Ul(zq))] +ao; (Zq)
x[1 =B, (6125 2) )| R(2 (2 2)) — by (2, 20) [1 = B2 (01 (2 )IR (0 (2,)).
Kty 24) = 291 (23, 24)0320) = [z7 + (L= 0)(1 = )by (i 7)1 2) B (1.2, 2,)
—a01(29)B3(¢2 (2, 29))[1 — B1($1(2p, 2¢)) 1R (D22, 24))
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-0(1—-7r)¢, (Zp' Zq)al (Zq)El (N (Zp' Zq))v(‘l’z (Zp' Zq))-

To find the unknown probability I, by using the normalizing condition W, (1,1) + [, = 1, we get
a(Ap+tDEXE(L,1)

Iy = @ - (35)
{a@n+AE@ k(11D -af (11} -5 (0,D{F(1,1)j (1,1)+9' (LK1, 1)}}
The utilization factor is given by p = 1 — [, thatis
{@2n+2DECOF(1LD)+P$P 0,11 (L) +9' (1)K, 1} 36)

P = Catnrroman-ar a3 @O0 0] LD+ LKD)
where,
1) = =4 + EX)[1 = B1 (@) {1 + a[E(B3) + ER)]} — 6(1 — r)a (A + WEX) B, ()E(V),
9'(L1) = —(An + WE)[1 - Bo(@)]{1 + aE(R)},
J'@AD = ad,(1 = EX)EX)[1 = By ()] _
k'(11) = a?[1 = 7By ()] — (A + WEX)a[l — By (a)]{1 + a[E(Bs) + E(R)]}
~0(1 = r)a* (A + ADE OB (@E V),

Lya(AE(X1) + L)E(X)
{a = MEM@) + ADEX)[L - B,(@)]{1 + aE(R)}}

Py (01) =

5.THE EXPECTED QUEUE LENGTH

The expected length of the high priority queue is

d
th = EVVQ}-L(ZP' 1)|Zp=1 (37)
and the expected length of the low priority queue is
d
qu =EVVql(1'Zq)|zq=1 (38)
then
_ DR"(1)NR"(1)-DR"(1)NR"(1)
LQh - 3(DR"(1))? (39)
_ dr"(D)nr"(1)—dr"'(1)nr"(1)
ba = 3(dr"(1))? (40)
where

NR'(1) = 21, EX) £, (1) + 2,2 (0,1){f, (1)) (1) + g1’ Dk, (1)}

NR"(1) = —loa{6(4,E(X))?f,'(1) — 3ad,E(X?)f,' (1) — 3at,EX)f,""(1)}
+3R2 0D (" (Wi’ () + £’ (Wi (D) + g Wk’ (D) + gn'(Wken’ (1}

DR'(1) = =2al,E(X)k,'(1)

DR"(1) = 6(/1hE(X))2kh'(1) — 3a/1hE(X2)kh'(1) —3aA,E(X)k,"'(1)

fiD) = =ECOM = By(@{1 + a[E(B,) + E(R)]} = 6(1 — )ad, E(X)By (a)E(V)

fu''(1) = —2(EX))?By(a){1 + a[E(B;) + ER)] —6(1 —m)aE(V)}
—MEX?)[1 = By (@)]{1 + a[E(B3) + E(R)]} — a(InE(X))?[1 — By (@)]
X {E(B32) + E(RZ) + 2E(B3)E(R)} +26(1 — r)(/lhE(X))ZBl(a)E(V)
—af (1 — )AL E(X?)B,(Q)E(V) — a8(1 — r)(A,E(X))*B,E(V?)

9n(D) = =EO)[1 = B, (@)]{1 + aE (R)}

gn''(1) = =24 E(X))?B, (@){1 + akE (R)} = LE(X?)[1 = By(0)]{1 + aE(R)}
—a(AEX))?[1 - By(@)]E(R?)

Jn'Q) = ady EQO[1 — By (a)]{1 + aE (R)} B

Jn''(D) = ad EXD)[1 = By()]{1 + aE (R)} + 2a(A,E(X))?*B,'(@){1 + aE (R)}
+a? (A4E (X))2[1 - By (@)]E(R?)

ky'(1) = a?[1 = 1B, ()] — aA E(X)[1 = By (@) {1 + a[E(Bs) + E(R)]} — a?0(1 — ALE(X)E(V)

k(1) = —ad, E(X?){[1 — By ()]{1 + a[E(B;) + E(R)]} + a8(1 — 1)By (0)E(V)}

92 Bulletin of Pure and Applied Sciences
Vol. 38E (Math & Stat.) No.1/January- June 2019




G. Ayyappan, B. Somasundaram and J. Udayageetha

—20{(/1,1E(X))ZB1 (a){l + a[E(B3) +ER)]—ab(1— r)E(V)}
—2alME(X){1— B (a) - arB1 (@)} +2a6(1 - 7‘)(/1hE(X))2 1(@EW)
—a? (AyE (X))2[1 = By ()]{E (B3) + E(R?) + 2E(B;)E(R)}
—a?0(1 — 1) (AE(X))* B (®)E(V?)}

nr'(1) = 2ya® LE) (D) + 2P2 (0,D{f'(1))' (1) + g,/ (Dk,' (1)}

nr(1) = —lo{6a(AE (X))2f'(1) + 6a(LEX)) (A E(X2) + AEXf'(1)
—3a? L, E(X))f,'(1) = 32 LEX) (D} + 6R7 (0,1){f' (' (1) + g,/ (Dk, (1)}
+3RP (0, (/L) + £/ WD) + 9" Dk (L) + g,/ (Dk, (1)}

dr'(1) = —2a, E(X)k;'(1)

dr''(1) = 6(/11E(X))2kl'(1) — 3a/11E(X2)kl'(1) = 3aLEX)k,"'(1)

f'(D) = —LEX)[1 - By(@)]{1 + a[E(B;) + E(R)]} — 0(1 — 1) ad E(X)B, () E(V)

£'(1) = —2LEX))? B (@){1 + a[E(By) + ER)] —0(1 —maE(V)}
~LEXD)[1 = By(@)]{1 + a[E(Bs) + ER)]} — a(RE(X))?[1 - By (@)]
X {E(B32) + E(RZ) + 2E(B;)E(R)} +26(1 — r)(/llE(X))ZBl(a)E(V)
—af (1 = LEX?)B ()EV) — ab (1 — ) (LE(X))?By (@)E(V?)

9/(1) = —LECO[1 - By()]{1 + aE (R)}

9,"(1) = —2(LE(X))?B,' (@{1 + aE (R)} = LE(X?)[1 - B(a)]{1 + aE(R)}
—a(LEX))?[1—B,(a)]E(R?)

Ji'(D) = a[1 =B (@HALEX) — (AEX,) + A)EX)}

Ji'(1) = 2aB,'(@)[1 + aERAEX))? = (AE(Xy) + )EX))?}
+a2[1 = B, @]ERD{(LEX))? — (ME(Xy) + A)E(X))?}
—a[1 =B, (@)][1 + aE (R){AE(X,)*E(X?) + 1,E(X?)E(X)}

k(1) = —a ECO{[1 — By (@]{1 + a[E(B;) + E(R)} + af (1 —1)B,E(V)}

k(1) = —a?(LE(X))?[1 — By (){E(B}) + E(R?) + 2E(B)E(R)}
+2a6(1 — r)(/llE(X))ZBl(a)E(V) - a28(1 - r)(/llE(X))ZBl(a)E(VZ)
+2(AE (X)) E (Xy) + ADECO{[1 - By (@]{1 + a[E(By) + E(R)]}
+af (1 = 1By (@)E(WV)} — a EX?){[1 — By (@) {1 + a[E(Bs) + ER)]}
+af(1—1r)B,E(V)} — 2a(LE(X))?B,'(@){1 + a[E(B;) + E(R)] —ab(1 — r)E(V)}

6. THE EXPECTED WAITING TIME

Expected waiting time of a customer in the high priority queue is

= Lay
an T 2, 41)
Expected waiting time of a customer in the low priority queue is
= Lo
@ 42)

7. PARTICULAR CASES

Case 1: If there is no low priority queue, no breakdown, no immediate feedback. i.e 4, = 0, @ = 0, r = 0. Then,
W(z) = —Io{[1-B1(Ap(1-C(2p)N]+0 B Ap(1-C(zp)N[1-V A (1-C(zp)D]}

2p—(1-8)B1(Ap(1-C(2p)))~6B1(An(1-C(2p))V (Ap(1-C(2p)))

The above result 001n01des with the result of Maraghi et al.[10].

Case 2: If there is no low priority queue, no breakdown, no immediate feedback, no bernoulli vacation. i.e 4, =0,
a=0,r=0, 8 =0. Then,
W(z) = —Io[1-B1(An(1-C(2)))]
2-B; (4 (1-C(2)))
The above result coincides with the result of Medhi. J [11].

8. NUMERICAL RESULT

The queueing model which we have mentioned is studied numerically with the following assumption. We
consider that the time of service in regular service and working breakdown service, time of repair and time of

93 Bulletin of Pure and Applied Sciences
Vol. 38E (Math & Stat.) No.1/January- June 2019



Analysis of Priority Queueing System With Working Breakdown, Repair, Immediate Feedback and
Bernoulli Vacation

vacation follows the exponential and the Erlang-2 distributions.

Table 2, shows that an increase in the high priority arrival rate leads to a decrease in the idle time and increases the
expected queue length and waiting time of high and low priority queues for the arbitrary values, we choosed; =
4,u=8u,=7,a=05n=065y=12,0=08r=04EX)=1,EXX—-1) =0, while A, varies
from 0.3 to 0.7 so as to satisfy the stability condition. In figure 1, we compare the result for the exponential and the
Erlang-2 distributions for idle time, expected length of queue and waiting time of the high and the low priority
under the values of Table 2.

Table 3, shows that an increase in the regular service rate increases the idle time and decreases the expected queue
length and the waiting time of the high priority and the low priority queues for the arbitrary values, we
choose 4, =26 , A4 =5u,=15a=4n=8y=160=01r=01LEX)=1EXX-1))=0 ,
while,u varies from 18.5 to 20 so as to satisfy the stability condition. In figure 2, we compare the result for the
exponential and the Erlang-2 distributions for the idle time, the expected length of queue and the waiting time of
high and low priority under the values of Table 3.

Table 2: Impact of A, on various queue characteristics

A Exponential Erlang-2

qh qu th qu Iy th qu qh qa

0.3 | 0.1929 | 04018 | 0.5130 | 1.3394 | 0.1283 | 0.1679 | 0.3021 | 0.1352 | 1.0070 | 0.0338

04 | 0.1714 | 0.5891 | 0.6621 | 1.4727 | 0.1655 | 0.1480 | 0.4472 | 0.2774 | 1.1181 | 0.0694

0.5 | 0.1509 | 0.8136 | 0.8506 | 1.6273 | 0.2127 | 0.1287 | 0.6235 | 0.4614 | 1.2470 | 0.1154

0.6 | 0.1311 | 1.0846 | 1.0945 | 1.8076 | 0.2736 | 0.1101 | 0.8386 | 0.7071 | 1.3976 | 0.1768

0.7 | 0.1120 | 1.4137 | 1.4198 | 2.0195 | 0.3550 | 0.0919 | 1.1025 | 1.0486 | 1.5750 | 0.2622

Table 3: Impact of pu,; on various queue characteristics

I’N Exponential Erlang-2

qh qu th qu Iy th qu qh a

18.0 | 0.2423 | 0.0972 | 0.1356 | 0.0374 | 0.0271 | 0.2182 | 0.0776 | 0.1045 | 0.0298 | 0.0209

18.5 | 0.2546 | 0.0961 | 0.1268 | 0.0369 | 0.0254 | 0.2313 | 0.0770 | 0.0943 | 0.0296 | 0.0189

19.0 | 0.2665 | 0.0948 | 0.1200 | 0.0365 | 0.0240 | 0.2439 | 0.0762 | 0.0862 | 0.0293 | 0.0172

19.5 | 0.2780 | 0.0935 | 0.1150 | 0.0360 | 0.0230 | 0.2561 | 0.0754 | 0.0801 | 0.0290 | 0.0160

20.0 | 0.2891 | 0.0921 | 0.1117 | 0.0354 | 0.0223 | 0.2680 | 0.0744 | 0.0759 | 0.0286 | 0.0152
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Figure 1:1;, versus(a) L, , (b) Ly, (c) Idle

an’ ar

In Figures 3 and 4 3-D graphs are illustrated. In Figure 3, the surface displays downward trend as expected for an
increase in the value of high priority arrival rate (1;) and breakdown rate () against the server idle probability.
Figure 4 shows that the surface displays an upward trend as expected for an increase in the value of high priority
arrival rate (4;) and breakdown rate («) against the expected queue length for high priority respectively.
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Table 4:Effect of pu; with varying value of pu; on various queue characteristics

n a Io Ly, Ly, Wa Wa,
0.6 2.3 0.5296 0.2229 0.0007 0.3716 0.0014
2.4 0.5202 0.2297 0.0020 0.3829 0.0041
2.5 0.5109 0.2363 0.0104 0.3939 0.0207
2.6 0.5019 0.2428 0.0272 0.4046 0.0544
0.7 2.3 0.4968 0.2980 0.0047 0.4257 0.0094
2.4 0.4867 0.3072 0.0061 0.4388 0.0122
2.5 0.4768 0.3161 0.0139 0.4515 0.0277
2.6 0.4672 0.3248 0.0294 0.4640 0.0587
0.8 2.3 0.4636 0.3875 0.0082 0.4844 0.0165
2.4 0.4528 0.3996 0.0097 0.4995 0.0194
2.5 0.4423 0.4113 0.0169 0.5141 0.0337
2.6 0.4320 0.4227 0.0310 0.5284 0.0620
0.9 2.3 0.4300 0.4933 0.0113 0.5481 0.0226
2.4 0.4185 0.5087 0.0127 0.5652 0.0255
2.5 0.4072 0.5237 0.0193 0.5819 0.0387
2.6 0.3962 0.5382 0.0321 0.5980 0.0642
96 Bulletin of Pure and Applied Sciences

Vol. 38E (Math & Stat.) No.1/January- June 2019




G. Ayyappan, B. Somasundaram and J. Udayageetha

0.52
0.5
0.48

2 048

044

0.42

0.4

Breakdown rate () Arrival rate (A,)

Figure 3:1;, and a versus Idle

05
F 045
£
2
K] 04
2
] :
035 -
3
k]
8
& 03
025
Breakdown rate (a) Armival rate ()
Figure 4:1, and a versusLg,
97 Bulletin of Pure and Applied Sciences

Vol. 38E (Math & Stat.) No.1/January- June 2019



Analysis of Priority Queueing System With Working Breakdown, Repair, Immediate Feedback and
Bernoulli Vacation

9. CONCLUSION

In this paper we study a priority queue based on working breakdown, repair, immediate feedback and Bernoulli
vacation. The queue providesservice under non-preemptive priority rule. We derive the probability generating
functions of the number of customers in the high and low priority queues using supplementary variable technique,
expected queue size, expected waiting time for the high and low priority customers and numerical results are also

obtained.
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