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1.  INTRODUCTION    

  
Recent developments in contemporary technology have intensified the interest of many researchers towards the 
study of MHD flows through porous media  on account of its extensive applications in geothermal and oil 
reservoir engineering as well as the erstwhile geophysical and astrophysical shove. The theoretical and 

experimental work on this subject can be found in the recent works of many authors, for example, Raptis [1] 
discussed unsteady free convection flow through a porous medium. Raptis and Perdikis [2] studied numerically 
free convection flow through a porous medium bounded by a semi-infinite vertical porous plate. Sattar [3] 
studied the same problem and obtained analytical solution by the perturbation technique adopted by Singh and 
Dikshit [4]. Recently, Krishna and Reddy M.G. [5] discussed MHD free convective rotating flow of visco-
elastic fluid past an infinite vertical oscillating plate. Krishna and Reddy G.S. [6] discussed unsteady MHD 
convective flow of second grade fluid through a porous medium in a rotating parallel plate channel with 
temperature dependent source. Krishna and Swarnalathamma [7] discussed the peristaltic MHD flow of an 
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Abstract: In this paper, we discuss the magnetohydrodynamic (MHD) flow of second grade fluid through a 
loosely packed porous medium in an impulsively started vertical plate with variable heat and mass transfer. 
The temperature of plate is made to rise linearly with time. The fluid considered is gray, absorbing-emitting 

radiation but a non-scattering medium. The equations for the governing flow are solved by making use of 
the Laplace-transform technique. The velocity, temperature and concentration are obtained analytically and 
computationally discussed with reference to governing parameters and are illustrated graphically, and 
physical aspects of the problem are discussed. Also skin friction, Nusselt number and Sherwood number are 
obtained analytically and tabulated.  
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incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass 
transfer under the effect of inclined magnetic field where, the viscous dissipation and Joule heating are also 
taken into consideration. Swarnalathamma and Krishna [8] discussed the theoretical and computational study of 
peristaltic hemodynamic flow of couple stress fluids through a porous medium under the influence of magnetic 
field with wall slip condition. Krishna D.V. et al. [9] discussed the unsteady hydromagnetic flow of an 
incompressible viscous fluid in a rotating parallel plate channel with porous lining under the influence of 
uniform transverse magnetic field normal to the channel and which work was extended by Krishna et al. [10]. 
Krishna et al. [11] studied the steady hydro magnetic flow of a couple stress fluid through a composite medium 
in a rotating parallel plate channel with porous bed on the lower half subjected to normal to the channel and 
extended the problem by taking the Hall current into account in a later work of Krishna et al. [12]. Krishna and 
Malashetty [13] discussed the unsteady flow of an incompressible electrically conducting second grade fluid in 
rigidly rotating parallel plate channel bounded below by a sparsely packed porous bed subjected to normal to the 
channel and further extended this problem by considering the Hall current in Krishna and Malashetty [14]. The 
effects of radiation and Hall current on an unsteady MHD free convective flow in a vertical channel filled with a 

porous medium have been studied by Veera Krishna et al. [15]. The heat generation/absorption and thermo-
diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid 
near an infinite vertical plate through a porous medium and taking the Hall current into account have been 
studied by Veera Krishna and Chamkha [16]. Veera Krishna et al. [18] discussed Hall effects on unsteady 
hydromagnetic natural convective rotating flow of second grade fluid past an impulsively moving vertical plate. 
In this paper, we consider radiation effects on MHD flow of second grade fluid past an impulsively started 
vertical porous plate with variable heat and mass transfer. The results are shown with the help of tables and 
graphs and an appendix and notations of the various symbols used are explained at the end of the paper. 

 
2.  FORMULATION AND SOLUTION OF THE PROBLEM  

 
We consider the unsteady MHD flow of second grade fluid past an impulsively started vertical porous plate.  
The x- axis is taken along the plate in the upward direction and y-axis is taken normal to the plate. Initially the 
fluid and plate are at the same temperature. A transverse magnetic field B0 of uniform strength is applied normal 
to the plate as shown in Figure 1. The viscous dissipation and induced magnetic field is neglected due to its 
small effect. Initially, the fluid and plate are at the same temperature T1 and concentration C1 in the stationary 

condition. At time t >0, the plate is moving with a velocity u = u0 in its own plane and the temperature of the 
plate is raised to Tw and the concentration level near the plate is raised linearly with respect to time. 

 
 

Figure 1: Physical configuration of the problem 

 
The unsteady hydro magnetic equations of the MHD flow through porous medium are as: 
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Considering the temperature difference within the flow sufficiently small, 
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function of temperature. This is accomplished by expanding 
4T  in a Taylor series about 
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higher-order terms, thus 
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Making use of non-dimensional variables, the equations (1), (2) and (9) leads to (dropping asterisks)
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The dimensionless governing equations (10) to (12), subject to the boundary conditions (13) to (15), are solved 
by the usual Laplace transform technique. Transforming equation (12) we get, 

2
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Using boundary conditions (13) to (15), we have, 
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The solution of the equation (16) is 
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where A and B are arbitrary constants. 
Again using the above boundary conditions (13) and (14), we get, 
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Taking the inverse Laplace transform for the equation (19) yields, 
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Also transforming the equation (11) renders 
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 Using the boundary conditions (13) and (14), it reduces to: 
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where, C and E are arbitrary constants. The values of C and E can be computed by using (13) and (14) to give  
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Taking now the inverse Laplace transform for the equation (23), we obtain 
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Similarly, again taking the Laplace transform of the equation (10) and making use of the initial and boundary 
conditions (13) to (15), it reduces to 
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Applying the boundary conditions (13) and (14) for (26), we obtain 
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Taking the inverse Laplace transform of the equation (28), we obtain the velocity as 
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The non-dimensional shear stress is given by 
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The non-dimensional Nusselt number is given by 
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The non-dimensional Sherwood number is given by 
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3.  RESULTS AND DISCUSSION 

 
We now discuss the exact analysis and present the investigation of the combined effects of heat and mass 
transfer on the MHD flow of second grade fluid bounded by loosely packed porous medium in an impulsively 
started vertical plate with variable heat and mass transfer. The expressions for the velocity, temperature and 
concentration are obtained by using the Laplace transform technique and we also discuss the physical behavior 
of the dimensionless parameters such as the Hartmann number M, the Darcy parameter D (Permeability 

parameter), the Radiation parameter R, α  the visco-elastic parameter, the thermal Grashoff number Gr, the 

mass Grashoff number Gm, the Prandtl number Pr and the Schmidt number Sc. Figures 2-13 display  the 

velocity, temperature and concentration. The Skin friction, Nusselt number and Sherwood number are shown in 
Tables (1-3). The velocity, temperature and concentration profiles for some realistic values of the Prandtl 
number Pr (Pr = 0.71, 0.16, 3 for the saturated liquid Freon at 273.3˚ and Pr = 7 for water) and the Schmidt 
number Sc (Sc = 0.2 for hydrogen) respectively. From figure 2, which shows the velocity profile for different 
values of M other parameters being fixed, we notice that the velocity decreases with increasing Hartmann 
number M. This is due to the fact that the application of transverse magnetic field results in a resistive type force 
(Lorentz force) similar to the drag force and upon increasing the intensity of the magnetic field which leads to 
the deceleration of the flow. Figure 3 is sketched in order to explore the variations of permeability parameter D. 

It is found that the magnitude of the velocity increases with increasing the values of permeability parameter D. 
This is due to the fact that increasing the permeability reduces the drag force which considerably assists the fluid 
to move fast. Likewise the magnitude of the velocity u reduces continuously with the increasing radiation 
parameter R as is evident from Figure 4. The magnitude of the velocity enhances with increasing second grade 

parameter α (see, Fig. 5). The variation of velocity for different values of dimensionless time t and Prandtl 

number Pr is shown in the Figures 6 and 7. It is noticed that the velocity increases with increasing time t. It is 
also observed from the Figure 7 that the magnitude of the velocity u decreases with increasing Prandtl number 
Pr. It is clear from the Figure 8 that the velocity decreases with increasing thermal Grashof number Gr (cooling 
plate), where as there is a sharp enhancement in the velocity on heating the plate, this is increase sustains away 
from the plate. Figure 9 reveals that the magnitude of the velocity increases with increasing mass Grashoff 

number Gm throughout the fluid region. Similarly the same phenomenon is observed with increasing Schmidt 
number Sc from Figure 10. The effect of radiation parameter R on the temperature profile is shown in Figure 11. 
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It is inferred that the temperatures, being as decreasing function of R, decelerates the fluid flow and reduces the 
fluid velocity. Such an effect may also be expected here as the increasing radiation parameter R makes the fluid 
thick and ultimately causes the temperature and thermal boundary layer thickness to reduce. Hence it is 
observed that the temperature decreases with increasing radiation parameter R throughout the fluid region. The 
Prandtl number actually describes the relationship between momentum diffusivity and thermal diffusivity and 
hence controls the relative thickness of the momentum and thermal boundary layers. From Figure 12, we 
observe that the temperature reduces with increasing values of Prandtl number Pr, it is also observed that the 
thermal boundary layer thickness is maximum near the plate and reduces with increasing distances from the 
leading edge and finally approaches to zero. It is also justified due to the fact that thermal conductivity of the 
fluid decreases with increasing Prandtl number Pr and hence decreases the thermal boundary layer and the 
temperature profile.  Figure 13 depicts that the increasing values of Schmidt number Sc leads to fall in the 
concentration profiles throughout the fluid.   
 
The numerical values of the skin friction (τ), Nusselt number (Nu) and Sherwood number (Sh) are computed and 

are tabulated in the Tables 1-3, in all these tables the comparison of each parameter is made with the first row in 
the corresponding table. It is found from the Table 1 that the effect of each parameter on the skin friction shows 

that τ increases with increasing R, D, ,α Pr, Gr, Gm, Sc and time t, while decreases with M and –Gr. It is also 

readily seen from the Table 2 that the Nusselt number Nu increases with increasing R, Pr and t and from the 

Table 3 we observe that the Sherwood number goes on increasing with increasing Sc and t. 
 
 

 
 

Figure 2: The velocity Profile for u against M with 1;α = D=1; P= 0.71; t=0.1; Sc=2; R=1; Gr=5; Gm=10 

 
 

 
 

Figure 3: The velocity Profile for u against D with   1;α = M=2; P= 0.71; t=0.1; Sc=2; R=1; Gr=5; Gm=10 



Heat and Mass Transfer on MHD Flow of Second Grade Fluid Past A Vertical Porous Plate 

79 Bulletin of Pure and Applied Sciences  
Vol. 38E (Math & Stat.) No.1 / January- June 2019 

 

 
 

 
 

Figure 4: The velocity Profile for u against R with 1;α = D=1; P= 0.71; t=0.1; Sc=2; M=2; Gr=5; Gm=10 

 
 

 
Figure 5: The velocity Profile for u against α  with D=1; P= 0.71; t=0.1; R=1; Sc=2; M=2; Gr=5; Gm=10 

 
 
 
 

 
 

Figure 6: The velocity Profile for u against Pr and t with 1;α = M=2; D=1; t=0.1; Sc=2; R=1; Gr=5; 

Gm=10 
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Figure 7: The velocity Profile for u against t with 1;α = M=2; D=1; t=0.1; Sc=2; R=1; Gr=5; Gm=10 

 

 
 

 
Figure 8: The velocity Profile for u against Gr with 1;α = M=2; D=1; P=0.71; Sc=2; R=1; t=0.1; Gm=10 

 
 

 
 

Figure 9: The velocity Profile for u against Gm with 1;α = M=2; D=1; P=0.71, Sc=2; R=1; t=0.1; Gr=5 
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Figure 10: The velocity Profile for u against Sc with 1;α = M=2; D=1; P=0.71, R=1; t=0.1; Gr=5; Gm=10 

 
 

 
 

Figure 11: The Temperature Profile for θ against R with P=0.71; t=0.1 

 
 
 

 
 

Figure 12: The Temperature Profile for θ against Pr with R=2; t=0.1 
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Figure 13: The Concentration Profile for C against Sc with t=0.1 

 

Table 1: Skin friction (τ) 

 

R M K α  Pr Gr Gm Sc t τ 

1 2 1 1 0.71 3 5 2 0.2 3.82554 

2         4.92588 

3         5.85145 

 3        3.47885 

 4        2.52245 

  2       4.22516 

  3       5.26355 

   2      6.32556 

   3      8.25669 

    0.16     2.22549 

    3     5.62898 

     4    4.25889 

     5    5.36699 

      8   7.58554 

      10   10.9885 

       3  3.96589 

       4  4.52699 

        0.3 4.11052 

        0.4 5.68470 

 
Table 2: The Nusselt number (Nu) 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

R Pr t Nu 

1 0.71 0.1 0.195870 

2 0.71 0.1 0.216376 

3 0.71 0.1 0.235839 

4 0.71 0.1 0.254358 

1 0.16 0.1 0.107555 

1 3 0.1 0.634710 

1 7 0.1 1.393160 

1 0.71 0.2 0.331442 

1 0.71 0.3 0.461249 

1 0.71 0.4 0.588593 
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Table.3: The Sherwood number (Sh) 

 

 

 
 

 
 
 
 
 
 
 
 
4.       CONCLUSIONS 

 
In this paper we study the unsteady MHD flow of visco-elastic fluid past an impulsively started vertical porous 
plate with variable heat and mass transfer. The following conclusions follow from the above discussion: 
 

1. The velocity decreases on increasing the intensity of the magnetic field. 

2. The velocity increases with increasing D, the permeability parameter or the visco-elastic parameter α .  

3. The magnitude of the velocity enhances and reduces continuously with increasing the radiation parameter R. 
4. The velocity increases with increasing time t. It is also observed that the magnitude of the velocity u 

decreases with increasing Prandtl number Pr.  
5. The velocity decreases with increasing thermal Grashof number Gr (cooling plate), whereas there is a sharp 

enhancement in velocity on heating the plate and this is increase sustains away from the plate.  
6. The magnitude of the velocity increases with increasing mass Grashof number Gm throughout the fluid 

region. The same phenomenon is observed with increasing Schmidt number Sc. 
7. The temperature decreases with increasing radiation parameter R or Pr. 
8. The increasing values of Schmidt number Sc lead to a fall in the concentration profiles throughout the fluid.   
9. The skin friction  enhances with increasing R, D, ,α  Pr, Gr, Gm, Sc and time t, while decreases with M and  

–Gr. 
10. Nusselt number Nu increases with increasing R, Pr and t. 
11. The Sherwood number goes on increasing with increasing Sc and t, while the Nusselt number Nu increases 

with increasing R, Pr and t.   
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Sc t Sh 

2 0.1 0.104512 

3 0.1 0.226218 

4 0.1 0.356825 

5 0.1 0.493120 

2 0.2 0.147802 

2 0.3 0.181019 

2 0.4 0.209023 

2 0.5 0.233695 
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NOMENCLATURE  

 

Volumetric coefficient of thermal expansion 

Volumetric coefficient of expansion with 

concentration 

σ  Stefan–Boltzmann constant 

ρ  Density 

θ  Dimensionless temperature 

ν  Kinematic viscosity 

µ  Coefficient of viscosity 

τ  Dimensionless skin friction 

b  Similarity parameter 

a* Absorption coefficient 
A  Constant 

B0 External magnetic field 
C  Species concentration in the fluid 

C  Dimensionless concentration 

Cp  Specific heat at constant pressure 
Cw Concentration of the fluid 

Concentration in the fluid far away from the 
plate 
D1 Chemical molecular diffusivity 
erf Error function 
erfc Complementary error function 
g Acceleration due to gravity 
Gm Mass Grashof number 

Gr  Thermal Grashof number 
D Darcy parameter 

1α        is the normal stress modulus,  

k Thermal conductivity of the fluid 
M  Magnetic field parameter 
Nu  Dimensional Nusselt number 
Pr Prandtl number 
qr Radiative heat flux in the y direction 
R Radiation parameter 
Sc  Schmidt number 

Sh Dimensional Sherwood number 
T  Temperature of the fluid near the plate 
t Time 

t  Dimensional time 

Tw Temperature of the fluid 
Temperature of the fluid far away from  the plate 
u Velocity of the fluid in the x - direction 
u0 Velocity of the fluid 

u  Dimensionless velocity 

y Coordinate axis normal to the plate 

Dimensionless coordinate axis normal to the plate 

Subscripts 

w Conditions on the wall 

∞  Free stream conditions 
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