
Library Progress International
Vol.44, No.5, July-December 2024--: P.730-738

Print version ISSN 0970 1052
 Online version ISSN 2320 317X

Original Article Available online at www.bpasjournals.com

Library Progress International| Vol.44 No.5 | July-December 2024 730

Enhancing Service-Oriented Architectures with Generative AI: A Case
Study in Local Web-Based Service Discovery

1Festim Halili*, 1Enisa Abazi, 1Merita Kasa Halili, 1Halim Halimi, 2Enes Bajrami

Author’s Affiliation:
1Faculty of Natural Science and Mathematics, University of Tetova, North Macedonia
2Faculty of Computer Science and Engineering, Ss. Cyril and Methodious University, North Macedonia
*Correspondent author: festim.halili@unite.edu.mk

ABSTRACT
This paper studies the integration of Generative AI with Service-Oriented Architectures to enhance
local web-based service discovery. As more and more organizations have started the process of
adopting SOA for updating their software environments, the integration of Generative AI presents
some exciting opportunities in improving state-of-the-art service matching and personalization. The
case study herein demonstrates the use of Flask in tandem with a generative AI model to match user
queries against services. With the system in this paper responding more to service-oriented computing
through keyword detection and natural language processing of user input, initial testing presents the
model as effective in the precise retrieval of services with a view to presenting a user-friendly interface
for dynamic service discovery. This approach identifies the feasibility of AI-driven enhancements to
SOA and creates the bedrock for subsequent applications in leveraging Generative AI for service
delivery frameworks.

KEYWORDS: Generative AI, Service Discovery, SOA, NLP, Web Services

1. Introduction
Service-Oriented Architecture (SOA) has garnered increasing attention as organizations seek to
modernize their software systems and address challenges in diverse operational environments [1] [2].
Transitioning from legacy platforms to SOA-based architectures has become a prevalent strategy,
facilitating the integration of cutting-edge technologies such as the Internet of Things (IoT), Cloud
Computing, and microservices [3]. SOA's modular structure promotes flexible integration and service
reuse, offering a unified framework that consolidates various applications and data sources within a
cohesive "black box." This approach ensures that IT resources remain accessible, regardless of
underlying technologies, programming languages, or platforms [4] [5]. As the demand for innovative
solutions grows, the integration of Generative AI into SOA presents exciting opportunities. Generative
models, especially diffusion models, are at the forefront of AI advancements, enabling the creation of
high-quality synthetic data across multiple modalities, including images, text, and audio [6] [7].
Originally developed for denoising images, diffusion models have evolved to effectively capture
complex data distributions, making them versatile tools for various applications. While early
generative models, such as Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs),
faced limitations due to their reliance on hand-designed features, the introduction of deep learning has
led to significant improvements through models like Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) [8]. However, GANs often encountered architectural instabilities,
prompting the shift toward diffusion models, which draw inspiration from non-equilibrium
thermodynamics [9]. This approach increases entropy and randomness over time, enhancing the
model's ability to generate diverse outputs. Recent innovations in diffusion models, particularly from
OpenAI, have made them more practical for everyday applications, paving the way for their integration

Library Progress International| Vol.44 No.5 | July-December 20-- 731

within SOA frameworks [7].

2. Literature Review
Author in [10] highlights that recent advancements in Generative Artificial Intelligence (GenAI) tools
have significantly impacted software development, providing valuable assistance across various
managerial and technical project activities. Prominent examples of these tools include OpenAI's
ChatGPT, GitHub Copilot, and Amazon CodeWhisperer. Despite the growing body of literature
evaluating the application of GenAI in software engineering, a comprehensive understanding of its
current development, applications, limitations, and open challenges remains elusive. Specifically, there
is a lack of a holistic view of the practical usage of GenAI technology in software engineering scenarios.
To address this gap, a literature review combined with focus groups was conducted over five months
to develop a research agenda centered on GenAI for Software Engineering. This investigation identified
78 open Research Questions (RQs) across 11 areas of software engineering. The findings indicate that
GenAI can facilitate partial automation and support decision-making throughout the software
development lifecycle. However, the existing literature tends to focus primarily on areas such as
software implementation, quality assurance, and software maintenance, leaving critical domains—such
as requirements engineering, software design, and software engineering education—needing further
research. Key considerations for implementing GenAI include industry-level assessments,
dependability and accuracy, data accessibility, transparency, and sustainability aspects associated with
the technology. While GenAI is poised to bring substantial changes to software engineering, the current
state of research on this topic remains underdeveloped. This research agenda is intended to provide
valuable insights and practical implications for both researchers and practitioners, informing them
about existing applications while guiding future research directions in the field. Author in [11]
discusses that Generative AI is considered a significant disruption in software development. Various
platforms, repositories, clouds, and the automation of tools and processes have been shown to enhance
productivity, reduce costs, and improve quality. With its rapidly expanding capabilities, Generative AI
represents a substantial advancement in this domain. As a key enabling technology, it can serve
multiple purposes, ranging from fostering creativity to automating repetitive and manual tasks. The
capabilities of large language models (LLMs) further amplify the opportunities presented by
Generative AI. However, this advancement also raises concerns regarding ethics, education, regulation,
intellectual property, and potential criminal activities. The authors analyzed the potential of Generative
AI and LLM technologies to shape future software development pathways. They propose four primary
scenarios, model trajectories for transitions between them, and reflect on their relevance to software
development operations. The motivation for this research is evident: the software development
industry requires new tools to comprehend the potential, limitations, and risks associated with
Generative AI, along with guidelines for its effective use. Author in [12] investigates the integration of
Generative AI into software development education. The authors provide examples of formative and
summative assessments that examine various aspects of ChatGPT, including its coding capabilities, its
effectiveness in constructing arguments, and the ethical considerations surrounding the use of
ChatGPT and similar tools in educational and workplace settings. The research is informed by survey
insights indicating that learners in the Degree Apprenticeship Programme are highly interested in
understanding and leveraging emerging AI technologies. Additionally, industrial partners express a
strong desire for their employees to be adequately prepared to utilize Generative AI in their software
engineering roles. To address this need, the authors propose embedding GenAI tools into the
curriculum in a thoughtful and innovative manner. By developing assessments that encourage learners
to critically evaluate AI-generated outputs, educators can enhance students' comprehension of the
subject matter while mitigating the risk of AI tools performing the work for them.

3. Service-Oriented Architecture
Researchers have examined SOA from multiple perspectives, encompassing technology, business, and
architectural viewpoints, which has led to a lack of a universally accepted definition. SOA is not a
standalone technology, a specific product, or a simple solution to IT complexities, nor does it guarantee
the resolution of all challenges within IT or information systems. Nevertheless, SOA is widely
recognized as a conceptual framework with significant potential applications across business, IT,
information systems, and enterprise-wide environments. [13]. Table 1 provides various descriptions of

Library Progress International| Vol.44 No.5 | July-December 20-- 732

SOA as outlined in previous studies.

Reference Definition
1 [14] Service-Oriented Architecture is a design approach for business

environments that promotes the development of loosely coupled,
interoperable, and technology-independent business services, enhancing
functionality and flexibility.

2 [15] Service-Oriented Architecture (SOA) is an architectural approach that
fosters service-orientation, a perspective focused on services, service-
driven development, and the results achieved through services.

3 [16] Service-Oriented Architecture (SOA) represents a form of technological
architecture that embodies the principles of service-orientation. When
implemented through a Web services technology platform, SOA has the
capacity to advance and uphold these principles across the domains of
business processes and enterprise automation.

4 [17] Service-Oriented Architecture (SOA) is a software architecture grounded
in core components, including an application front-end, services, a
service repository, and a service bus. Each service is composed of a
contract, one or more interfaces, and an underlying implementation.

5 [18] Service-Oriented Architecture (SOA) is a software architecture that
begins with defining interfaces and structures the application as a
network of interfaces, their implementations, and interrelated interface
calls. SOA establishes a relationship between services and service
consumers, where each software module is substantial enough to
encapsulate a complete business function.

Table 1. SOA definition

The various definitions of SOA presented in Table 1 reflect distinct perspectives. While none are
incorrect, there is general consensus among scholars that SOA can be understood as an architectural
concept emphasizing loose coupling, reusability, interoperability, agility, and efficiency [1]. SOA
focuses on decomposing business processes into discrete tasks and functions, often conceptualized as
services. Numerous scholars have indicated that the integration of Service-Oriented Architecture (SOA)
with complementary technologies can yield enhanced benefits for organizations [5]. The convergence
of SOA and AI enhances system performance and responsiveness. By embedding AI capabilities into
SOA frameworks, organizations can create intelligent services that learn and adapt over time [19]. For
example, customer service applications can integrate AI-driven chatbots that improve responses based
on user interactions [20]. This integration allows for real-time data processing and decision-making,
significantly boosting customer experience and operational efficiency. Additionally, SOA enables the
deployment of AI services across various platforms [21]. Organizations can leverage cloud-based AI
services and APIs, allowing them to scale AI capabilities without extensive system reconfiguration. This
flexibility helps businesses experiment with innovations like predictive analytics and automated
decision-making without overhauling their entire IT infrastructure. Aligning these technologies will be
crucial for driving efficiency and enhancing service delivery [22].

4. Generative AI
Generative artificial intelligence (AI) has rapidly gained prominence, particularly following the
emergence of models such as ChatGPT and GPT-4, alongside similar advancements from competing
organizations [23]. Beyond the ethical and practical concerns raised by scholars, it is evident that
generative AI has found substantial applications in various sectors, rendering discussions about its
potential impact increasingly relevant. The question is no longer whether generative AI will be
influential, but rather to what extent it will shape societal dynamics and what potential harms may
arise from its use in generating text and other forms of content [24]. Technological advancements
inevitably lead to societal transformations, prompting critical inquiries into how new technologies
influence, foster, or possibly undermine the concept of the “good society.” In this context, generative
AI represents a significant instance of politically and culturally disruptive autonomous technology [25].

Library Progress International| Vol.44 No.5 | July-December 20-- 733

Research and development in generative AI (GAI) are focused on creating better, faster, and more
capable models. However, the foundational principles, applications, and socio-economic impacts of
GAI have not been thoroughly explored in academic discussions [26]. While GAI presents
opportunities for innovation across various sectors, such as networked businesses and digital
platforms, it also poses challenges, including issues related to transparency, biases, and potential
misuse, that must be addressed for effective implementation [27]. Despite the importance of
understanding key concepts, comprehensive examinations of generative AI remain lacking, resulting
in an unclear understanding of its principles [28].

5. Methodology
In this section, we outline the methodology employed to test the integration of Generative AI into a
Service-Oriented Architecture (SOA) for local web-based service discovery. Overview of the SOC
Environment: A typical Service-Oriented Computing (SOC) setup consists of various components,
including service directories, individual services, and communication protocols such as HTTP. Services
are modular units that perform specific tasks, while the service directory acts as a registry for these
services, allowing users to discover and access them efficiently. Generative AI Model for Service
Matching: The generative AI model utilized for this study employs natural language processing
techniques to recommend services based on user queries. In our approach, we trained the model using
a dataset comprising common user requests and corresponding service descriptions. Alternatively, for
simpler implementations, keyword detection techniques may be used, where the model matches user
queries to service descriptions by identifying relevant keywords. For example, a user query like
"Analyze customer data" would be matched to a "data analysis" service through keyword detection.
Local Web Interface: To facilitate user interaction, we implemented a web interface using Flask. This
framework allows users to submit their queries and receive service recommendations seamlessly. The
local web interface serves as the front end, enabling users to enter their requests and view matched
services based on the generative AI model's recommendations.

6. System Design and Architecture
The system is designed to enhance the traditional Service-Oriented Architecture by integrating
Generative AI for improved service discovery.
Architecture Overview: The architecture consists of three main components: the service directory, the
generative AI service, and the web interface.

1. Service Directory: This component stores a registry of services, including their descriptions
and metadata. It allows for efficient querying and retrieval of available services based on user
input.

2. Generative AI Service: This service acts as the core engine for matching user queries to relevant
services. By employing natural language processing and machine learning techniques, it
analyzes user input and recommends suitable services. The training data includes a variety of
service descriptions and user queries to improve the model's accuracy and relevance.

3. Web Interface: Built with Flask, the web interface serves as the user entry point. Users can
submit queries through a simple form, and the interface communicates with the generative AI
service to retrieve service recommendations. The results are displayed in an intuitive format,
enabling users to easily navigate the available services.

Communication Protocols: The system utilizes HTTP as the primary communication protocol between
the web interface and the generative AI service. This standard protocol ensures that requests and
responses are transmitted efficiently and securely, providing a smooth user experience. This design not
only enhances service discovery through intelligent matching but also maintains the modularity and
scalability inherent in Service-Oriented Architectures.

7. Implementation
This section outlines the implementation of a web-based service discovery application developed using

Library Progress International| Vol.44 No.5 | July-December 20-- 734

Flask, which demonstrates enhancements in service-oriented architectures (SOA) through the
integration of generative AI techniques. The application is built using the Flask framework, a micro
web framework in Python that promotes modular and scalable web application development. The
architecture follows service-oriented principles, allowing for independent service modules that can be
easily integrated or modified. The primary functionality revolves around matching user queries with
relevant services. The match_service function, imported from ai_model.py, implements the logic for
this matching process. When a user submits a query through the web interface, the application captures
the input and passes it to the match_service function, which analyzes the query and identifies
corresponding services. The application provides a simple user interface, consisting of an input field
for users to enter their queries. Upon submission, the query is processed, and the matched services are
returned and displayed on the results page (results.html). This interaction exemplifies a user-centric
design in service-oriented architectures, where user feedback directly informs service offerings. While
the current implementation utilizes a basic matching algorithm, there is significant potential for
enhancing this functionality through generative AI techniques. Future iterations could involve
integrating natural language processing (NLP) models to better understand user intent and generate
more accurate service recommendations. This approach aligns with the concept of generative AI, which
focuses on creating new content or suggestions based on learned patterns from existing data. The
application has been tested to ensure proper functionality, with various user queries evaluated to assess
the accuracy of the service matching. Initial results indicate that the application effectively returns
relevant services based on user input. However, further testing is planned to refine the matching
algorithm and explore the implementation of generative AI techniques for enhanced user experience
and service relevance.

8. Discussion
In this section, we discuss the practical implementation and user interface of our web-based service
discovery application, built to enhance service-oriented architectures using Generative AI. The
application allows users to search for services via a simple query input, leveraging an AI model to
retrieve and display relevant service matches. Screenshots of key interfaces are provided to illustrate
the workflow, showcasing how the application processes user inputs and presents results. This
interface design aims to create a smooth, user-friendly experience, aligning with the project’s objective
to simplify service discovery and make service-oriented computing more accessible for end-users.

Figure 1: Homepage

Figure 1 displays the application's home page, where users can enter queries to search for specific
services. Upon entering a query, users can initiate the search by clicking the “Match Service” button,
activating the backend service-matching functionality.

Library Progress International| Vol.44 No.5 | July-December 20-- 735

Figure 2: Result page

Figure 2 displays the results page, where the application shows services that match the user’s query.
This output provides users with descriptions and details of services that best align with their needs,
thereby enhancing the service discovery process. The web application, built with Flask, facilitates user
interaction by capturing search queries and providing AI-driven service recommendations. When a
user submits a query through the form on index.html, the application sends the input to the /match
route. Here, the match_service function processes the query using AI to find services that best match
the user's needs. The resulting service suggestions are then displayed on the results.html page. This
structure supports a seamless and dynamic user experience in service-oriented computing, where the
integration of AI simplifies the process of discovering and matching relevant services based on specific
user needs.

 1. from flask import Flask, render_template, request
 2. from ai_model import match_service # Import the service matching function
 3.
 4. app = Flask(__name__)
 5.
 6. @app.route('/')
 7. def index():
 8. return render_template('index.html') # Render the main page
 9.
10. @app.route('/match', methods=['POST'])
11. def match():
12. user_query = request.form['query'] # Retrieve the user query from the form
13. matched_service = match_service(user_query) # Call the matching function
14. return render_template('results.html', service=matched_service) # Render results page
15.
16. if __name__ == '__main__':
17. app.run(debug=True) # Run the application in debug mode

The match_service function is designed to intelligently match a user's input query with available
services by examining keywords. It returns the relevant services and their descriptions if they align
with the user's query or displays a message if no match is found.

def match_service(user_query): matched_services = {service: description for service, description in services.items()
if any(word.lower() in user_query.lower() for word in service.lower().split())} return matched_services if
matched_services else "No services found"

Input Parameter:

 user_query: This parameter takes the text input from the user (entered through a form),
which specifies what they are looking for.

Library Progress International| Vol.44 No.5 | July-December 20-- 736

Service Matching:

 The function iterates over each service and description in the services dictionary. The services
dictionary is expected to contain predefined service names as keys and their descriptions as
values.

Keyword Matching:

 For each service, the code checks if any word in the service name matches a keyword from
the user_query.

 The any() function is used to return True as soon as it finds a matching keyword in the user
query.

 The lower() method ensures the matching process is case-insensitive, allowing words like
"Database" and "database" to be considered equal.

Return Value:

 If any services match the query, the function returns a dictionary containing those matching
services and their descriptions.

 If no matches are found, it returns a message: "No services found".

9. Conclusion
The present work underlines the importance of embedding Generative AI into a Service-Oriented
Architecture for more effective and accessible service discovery. We implemented a local web-based
application of service discovery where the underlying AI-powered matching model illustrates how
Generative AI makes SOA frameworks smarter for better service relevance and more impactful user
interaction. These results have shown that this approach supports smooth service retrieval, scalability,
and adaptability pertinent to the SOA environment. Further developments could create even more
advanced generative AI models in the future, applying deep learning to even higher levels of NLP to
continue improving the user experience. This will enable the organizations to extend their capabilities
within the SOA toward intelligent, responsive, and scalable systems that meet user needs with greater
precision.

References

[1] Naghmeh Niknejad, Waidah Ismail, Imran Ghani, Behzad Nazari, Mahadi Bahari, Ab Razak Bin

Che Hussin,, "Understanding Service-Oriented Architecture (SOA): A systematic literature
review and directions for further investigation," Information Systems, vol. 91, 2020.

[2] Guillermo Rodríguez , J. Andrés Díaz-Pace , Álvaro Soria, "A case-based reasoning approach to
reuse quality-driven designs in service-oriented architectures," Information Systems, vol. 77, pp.
167-189, 2018.

[3] Georgios Katsikogiannis , Dimitrios Kallergis , Zacharenia Garofalaki , Sarandis Mitropoulos ,
Christos Douligeris, "A policy-aware Service Oriented Architecture for secure machine-to-
machine communications," Ad Hoc Networks, vol. 80, pp. 70-80, 2018.

[4] P. Gupta, T.P. Mokal, D.D. Shah, K.V.V. Satyanarayana, "Event-driven SOA-based iot
architecture," International Conference on Intelligent Computing and Applications. Advances in
Intelligent Systems and Computing, Springer, Singapore, pp. 247-258, 2018.

[5] M.H.I. Hamzah, F. Baharom, H. Mohd, "An exploratory study for investigating the issues and
current practices of service-oriented architecture," J. Inf. Commun. Technol, vol. 18, no. 3, p. 273–
304, 2019.

[6] T. Hayet, J. Knani, "SOAP-based web service for localization of multi-robot system in cloud,"
Advances in Intelligent Systems and Computing, vol. 857, pp. 398-410, 2019.

Library Progress International| Vol.44 No.5 | July-December 20-- 737

[7] Gaurav Raut, Apoorv Singh, "Generative AI in Vision: A Survey on Models, Metrics and
Applications," Computer Vision and Pattern Recognition, pp. 1-12, 2024.

[8] Prafulla Dhariwal, Alex Nichol, "Diffusion Models Beat GANs on Image Synthesis," Machine
Learning, pp. 1-44, 2021.

[9] G. Rodríguez, J.A. Díaz-Pace, Á. Soria, "A case-based reasoning approach to reuse quality-driven
designs in service-oriented architectures," Inf. Syst, pp. 167-189, 2018.

[10] Anh Nguyen-Duc, Beatriz Cabrero-Daniel, Adam Przybylek, Chetan Arora, Dron Khanna, Tomas
Herda, Usman Rafiq, Jorge Melegati, Eduardo Guerra, Kai-Kristian Kemell, Mika Saari, Zheying
Zhang, Huy Le, Tho Quan, Pekka Abrahamsson, "Generative Artificial Intelligence for Software
Engineering -- A Research Agenda," Software Engineering, pp. 1-87, 2023.

[11] Jaakko Sauvola, Sasu Tarkoma, Mika Klemettinen, Jukka Riekki and David Doermann, "Future of
software development with generative AI," Automated Software Engineering, vol. 31, 2024.

[12] Olga Petrovska, Lee Clift, Faron Moller, Rebecca Pearsall, "Incorporating Generative AI into
Software Development Education," CEP '24: Proceedings of the 8th Conference on Computing
Education Practice, pp. 37 - 40, 2024.

[13] Eric A. Marks, Michael Bell, Service‐Oriented Architecture: A Planning and Implementation
Guide for Business and Technology, Wiley - Online Library, 2012.

[14] Sean Wheller and SYSPRO (PTY) Ltd, A Guide to Service Oriented Architecture, 2006.

[15] V. Haren, SOA Source Book, Van Haren Publishing, Zaltbommel, www.vanharen.net, 2009.

[16] Thomas Erl, "Sample Chapter 16 from "Service-Oriented Architecture: Concepts, Technology, and
Design"," Donnelley in Crawfordsville, Indiana, 2005.

[17] D Krafzig, K Banke, Dirk Slama, Enterprise SOA - Service-Oriented Architecture Best Practices,
2003.

[18] T. G. K. Vasista and Mohammed A. T. AlSudairi, "Service-Oriented Architecture (SOA) and
Semantic Web Services for Web Portal Integration," in Proceedings of the Second International
Conference on Advances in Computing and Information Technology (ACITY) July 13-15, Chennai, India
- Volume 2, 2013.

[19] Erl, T., "Service-Oriented Architecture: Concepts, Technology, and Design," in Prentice Hall, 2005.

[20] García-Magariño, I., Pacheco, J. A., & Pérez-Sanagustín, M., "Cloud-based AI services in a service-
oriented architecture," Journal of Cloud Computing: Advances, Systems and Applications, vol. 9, no. 1,
2020.

[21] Peters, K. , "Leveraging AI in customer service through SOA," International Journal of Information
Systems and Project Management, vol. 6, no. 1, pp. 23-24, 2018.

[22] Russell, S., & Norvig, P., Artificial Intelligence: A Modern Approach, Prentice Hall, 2010.

[23] Henrik Skaug Sætra , "Generative AI: Here to stay, but for good?," Technology in Society
(ScienceDirect), pp. 1-5, 2023.

[24] Charla Griffy-Brown , Brian D. Earp , Omar Rosas, "Technology and the good society," Technology
in Society (ScienceDirect), vol. 53, pp. 1-3, 2018.

[25] L. Winner, Autonomous technology: Technics-out-of-control as a theme in political thought, 1978.

[26] Strobel, G., Schoormann, T., Banh, L., & Möller, F. , "Artificial Intelligence for Sign Language
Translation – A Design Science Research Study," ommunications of the Association for Information
Systems, vol. 53, pp. 42-64, 2023.

[27] Strobel, G., Banh, L., Möller, F., & Schoormann, T, "Exploring generative artificial intelligence: A
taxonomy and types," Hawaii International Conference on System Sciences (HICSS 2024), Hawaii,
USA., 2024 .

[28] Sara Moussawi, Marios Koufaris , Raquel Benbunan-Fich , "How perceptions of intelligence and
anthropomorphism affect adoption of personal intelligent agents," Electronic Markets , vol. 31, p.
343–364, 2020.

Library Progress International| Vol.44 No.5 | July-December 20-- 738

Appendix

The server log provides a detailed view of the Flask application’s runtime environment, including
initialization, requests, and responses. Initially, the command cd C:\Users\Enes\Desktop\testing
navigates to the application directory, followed by python app.py, which starts the Flask application.
Once initiated, the server confirms the main module (app) is in debug mode, indicated by * Debug
mode: on, which allows for error tracing and auto-reloading on code changes. A development server
warning appears, reminding that this setup is not suitable for production, suggesting a WSGI server
for deployment instead. The server then runs locally at http://127.0.0.1:5000, where users can access
the application. Additionally, Flask’s stat mechanism restarts the server when it detects file changes,
activating the debugger and providing a secure PIN (Debugger PIN: 141-182-349) for accessing debug
features. The log captures three HTTP requests, each indicating the method, endpoint, status code, and
timestamp. First, a GET / request (status 200) for the homepage completes successfully, followed by a
GET /favicon.ico request with a 404 status, indicating that the favicon was not found. Finally, a POST
/match request logs a user query submission to the match endpoint, which completes successfully with
a 200 status. This log outlines the initialization, interaction, and response sequence of the application,
providing a complete snapshot of the development environment and typical request handling.

