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ABSTRACT 
Introduction/Importance of Study: The incorporation of Industrial IoT (IIoT) has dramatically 
impacted maintenance plans in place, and likely, there are more approaches for decreasing 
unanticipated outages for maintenance tasks, such as a prominent type called prescriptive 
maintenance. Previous studies have highlighted the efficiency of using AI-based machine learning 
algorithms for predictive maintenance. Still, an in-depth analysis of such an approach in the context 
of an industrial setting has not yet been conducted.  
Novelty Statement: This paper offers a comparative evaluation of different machine learning models, 
such as Random Forest, Support Vector Machines, Neural Networks, and Gradient Boosting, for aims 
at predictive maintenance in IIoT systems.  
Material and Methods: The study used historical data on maintenance for industrial sensors and IoT 
devices. Several classical and advanced machine learning techniques were deployed and assessed in 
terms of accuracy, F1-score, precision, recall rates, and computational time and space complexity 
other than scalability in real-time industrial applications.  
Results and Discussion: The comparison showed that there is a rather notable difference in the 
efficiency of the used machine learning algorithms. Neural Networks provided the most incredible 
accuracy, and Random Forests provided a good compromise between accuracy and computational 
time. Accuracy SVMs performed very well but were not very efficient in terms of Space Complexity. 
Gradient Boosting was highly accurate, but it took a lot of time to implement; hence, it was not 
feasible for real-time problems.  
Concluding Remarks: Remarkably, the results highlight that, although Neural Networks and 
Gradient Boosting have a higher accuracy, Random Forests may be more effective to be used in the 
Big Data and real-time industrial environments in terms of efficiency and demand. Something that 
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this study offers to industrial practitioners is how to decide on the best machine learning algorithm 
for predictive maintenance in IIoT systems.  
KEYWORDS: Industrial IoT (IIoT), Predictive maintenance, Prescriptive maintenance, Machine 
learning algorithms, Random Forest, Support Vector Machines (SVM), Neural Networks, Gradient 
Boosting, Maintenance optimization 
INTRODUCTION  

IIoT is the new generation of IoT that has revolutionized conventional industrial production 
by allowing real-time data collection and analysis from smart devices. This has led to the concept of 
predictive maintenance, which is a preventive process of anticipating a failure in equipment with a 
view of preventing it before it happens, hence reducing excessive downtime. Predictive maintenance 
utilizes machine learning strongly in collecting and analyzing big data that the IIoT systems generate 
to determine when the systems need to be maintained (V. Kumar, Prakash, & Thamburaj, 2024) (Ong, 
Wang, Niyato, & Friedrichs, 2021).  

As it is evident from the above-discussed use of predictive maintenance, artificial intelligence 
is an emerging field with several machine learning algorithms still under research in this field. 
Different types like Random Forest, Support Vector Machine, Neural Networks, and Gradient 
Boosting have been used, and they have different characteristics and factors affecting performance in 
terms of accuracy, time, space, and real-time feasibility. Nevertheless, a comparative analysis of these 
algorithms in the context of the IIoT has not been extensively conducted (Abbas, 2024) (Goriparthi, 
2023).  

This work seeks to fill this gap by undertaking a comparative study regarding several machine 
learning algorithms that have been employed in IIoT for predictive maintenance. This paper aims to 
review some of these algorithms from the standpoint of the characteristics that define their 
performance and real-time applicability within industrial scenarios, thus seeking to offer the relevant 
expertise to practicing engineers for the practical selection of the best-fitting algorithm. It is believed 
that the outcome of this study will be helpful in fine-tuning the application of predictive maintenance 
techniques, hence improving the robustness of operations in industries (Saboo & Shekhawat, 2024) 
(Lee, Ni et al., 2020).  

The progress of IIoT has accelerated at a breakneck pace in recent years, which has rewritten 
conventional industrial processes, wherein more and more devices and industrial systems are 
connected and share big data in real time. When used and analyzed correctly, this data presents a 
wealth of possibilities for increasing efficiency, cutting costs, and improving the effectiveness of 
several industrial processes. Out of all the IIoT applications, PM is amongst the most effective because 
it reduces the dependence on other forms of maintenance, such as preventive or remedial. Predictive 
maintenance proactively uses real-time data mining to foretell failures of present and future 
equipment, thereby reducing times and recurrent maintenance costs and increasing the overall 
reliability of the equipment (Jambol, Sofoluwe, Ukato, & Ochulor, 2024) (Ong, Wang, Hieu, Niyato, 
& Friedrichs, 2022).  

Predictive maintenance extensively incorporates machine learning that can analyze data 
gathered from IIoT and come up with an eventuality. In this regard, the performance of these 
algorithms is of paramount importance for the success of the predictive maintenance approaches 
because they give information about how accurate the predictions are and how timely the potential 
maintenance actions are. Many machine learning algorithms can be used in the practice of condition-
based maintenance, and each of these methods has specific benefits and limitations. For instance, 
Random Forest, which is one of the most frequently used ensemble learning algorithms, is recognized 
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for its stability and applicability in big data analysis with its large number of features (Banerjee, 
Kumar, & Sharma, 2024) (Lee, Singh, Azamfar, & Pandhare, 2020).  

There is another type of ML model known as Support Vector Machines (SVMs) that shows 
excellent performance in classification problems, and these models are used when the data is not 
separable from straight lines. Neural Networks' intense learning has attracted much consideration due 
to their capacity to model complexity and non-parametric association, thereby making them very 
useful when capturing complex patterns in IIoT data. Gradually Boosting, another powerful ensemble 
method, is also used and is more accurate in many predictive assignments but, at the same time, uses 
more time to process (Ejjami & Boussalham, 2024) (Borghesi, Burrello, & Bartolini, 2021).  

However, there is little research on the comparative analysis of predictive maintenance and 
application of these algorithms in the real world of IIoT environments. A lot of research has adopted 
the theoretical approaches to these algorithms or used the algorithms on some selected problems. Still, 
a comprehensive one that compares such algorithms, taking into account fundamental factors such as 
accuracy, scalability, computational complexity, and real-time feasibility, has not been extensively 
done. Such an analysis is very important for industrial practitioners because they have to select the 
most appropriate machine-learning algorithm for their given operational environment (Arunkumar, 
2024) (Sivakumar, Maranco, & Krishnaraj).  
  This work aims to fill this gap by providing a comprehensive review of the use of several 
machine learning algorithms in predictive maintenance in IIoT systems. The study will consider 
Random Forest and Support Vector Machines, Neural Networks, and Gradient Boost techniques for 
analyzing real-world industrial data sets. When evaluating the algorithms, the significant figures of 
merit will comprise prediction accuracy, the F1-score, precision, recall time complexity, and system 
scalability. Further, the implications of employing these algorithms in a real-time paper and metal 
industrial setting and how factors such as data latency, processing power, and compatibility with 
existing infrastructures are dealt with (Elkateb, Métwalli, Shendy, & Abu-Elanien, 2024) (Hafeez, 
Xu, & Mcardle, 2021).  

The results of this study are expected to assist industrial practitioners in the best machine 
learning algorithm that they should deploy for their predictive maintenance. Since this work is meant 
to shed light on the application of nine algorithms to IIoT and the revelation of their strengths and 
weaknesses, this paper will positively contribute to the enhancement of optimal solutions to the 
predictive maintenance strategies common in industries. In addition, the study will provide a 
suggestion on future direction in this Area concerning the angle of improvement and changes in the 
algorithm to further advance the application of predictive maintenance for IoT systems (Ni, Zang, & 
Qiao, 2024) (Theissler, Pérez-Velázquez, Kettelgerdes, & Elger, 2021).  

As such, it could be concluded that as industries become more open to the IIoT and transition 
to more data-driven maintenance strategies, the need for sound approaches to predictive maintenance 
will only continue to grow. The comparative analysis of different machine learning algorithms in this 
study will be instrumental in refining our knowledge of how to most effectively deploy AI in 
maintaining predictive abilities for industrial processes and maintaining the strength and sustainability 
of operations and products as they meet new hurdles and engage new possibilities (Paroha, 2024) 
(Bemani & Björsell, 2022).  
 Literature Review  

With the advent of the Industrial Internet of Things in the management of industrial operations, 
maintenance has undergone a significant shift with the development of the use of predictive 
maintenance. This is several steps ahead of outright breakdown maintenance or the use of time-based 
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maintenance techniques since it helps organizations prevent machine breakdowns and thus eliminates 
unnecessary downtimes. The reliability of predictive maintenance can significantly depend on the 
algorithms employed in machine learning for evaluating the deluge of data collected through IIoT 
networks. Different machine learning algorithms, including Random Forest, SVM, Neural Network, 
and Gradient Boosting, are used for this purpose, and each has its pros and cons (Hamdan, Ibekwe, 
Ilojianya, Sonko, & Etukudoh, 2024) (Durbhaka, 2021).Random Forest is even one of the most 
popular methods in ensemble learning since it has high stability when working with large and high-
dimensional datasets. It has been reported to provide a balance between accuracy and 
computational time and Cost and, therefore, can be used in a variety of predictive maintenance 
applications. But, what may act as a disadvantage is its slower time of making predictions, especially 
in real-time contexts. The Support Vector Machines have often been used in the classification range. 
They are very effective, especially when the data that is being analyzed is nonlinear, as is the case in 
many industries. SVMs have been established to have high accuracy; however, it is also true that 
their usage is computationally expensive, and their performance can drop significantly when applied 
to large datasets (Bhambri & Rani, 2024) (Ohalete, Aderibigbe, Ani, Ohenhen, & Akinoso, 2023). 
Neural networks' profound learning techniques have, therefore, attracted a lot of discussion due to 
their ability to learn even nonlinear relationships in data. They tend to work very well when it comes 
to detecting complex structures in IIoT data that other models of lower complexity would be 
incapable of perceiving. However, the use of deep learning models involves massive calculations and 
large amounts of data, which are often unfeasible in small-scale industries. Another form of 
ensemble method is Gradient Boosting, which is reputed for its high accuracy rate in predictive 
problems. XGBoost, one of the widely used implementations of Gradient Boosting, is primarily used 
for predictive maintenance because of its capacity to train in massive amounts of data and high 
ability to adjust given parameters (Nzeako, Akinsanya, Popoola, Chukwurah, & Okeke, 2024) (Hadi, 
Hady, Hasan, Al-Jodah, & Humaidi, 2023). However, Gradient Boosting may commonly require high 
computational capabilities, which though could make its real-time implementation somewhat 
challenging. Cross-sectional research in the literature also points to the fact that the performance of 
these algorithms depends on the nature of the application. For example, although we can recognize 
that neural networks can produce the best results, we also can understand that random forests are 
better used in real-time applications because of the faster prediction time. In the same way, 
Gradient Boosting is very effective, but it is not suitable for places where computational speed is 
critical. These works show that the set of heuristics for choosing the most suitable machine-learning 
algorithm must correspond to the requirements and conditions of the industrial setting (Semwal et 
al., 2024) (Zheng, Paiva, & Gurciullo, 2020). However, there are still several issues in the application 
of machine learning for predictive maintenance. A drawback is that to set up the machine learning 
algorithms properly, a lot of labeled data is required. For industrial applications, where equipment 
does not fail often, this can present a problem. Furthermore, the integration of these models into 
the existing framework tends to have a profound impact on the fundamental structure and, as a 
result, incurs high costs. Additionally, the computations needed to perform some algorithms, 
profound learning models and Gradient Boosting models, are computationally expensive for real-
time usage (Ukato, Sofoluwe, Jambol, & Ochulor, 2024) (Putha, 2022).  
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Consequently, the literature review of predictive maintenance in IIoT acknowledges 
the importance of machine learning algorithms in providing adequate maintenance 
techniques. There is no best or one-size-fits-all fit, but the choice of algorithm must be based 
on how the operation is conducted. Further research is demanded to solve the existing 
problems, such as data acquisition, data fusion, and computational performance, especially 
concerning prescriptive analytics for condition-based maintenance, to unleash the full 
potential of IIoT in industries (Babayeju, Adefemi, Ekemezie, & Sofoluwe, 2024) (P. Sharma, 
Jain, Gupta, & Chamola, 2021). IIoT, which is already operational in many industries, has 
revolutionized the maintenance processes, and one of the changes has been the introduction 
of predictive maintenance as a means of boosting efficiency and minimizing downtime. Each 
machine connected through the IoT gets real-time data that aids in the prevention of 
breakdown by identifying potential failures before they happen. Predictive maintenance is 
highly sensitive to the machine learning algorithms that are used to process the enormous 
data set from IIoT systems. Algorithms such as Random Forest, SVM, Neural Networks, and 
Gradient Boosting have been implemented for this use. However, each of them has its 
strengths and weaknesses when it comes to the implementation of predictive maintenance 
(Juliet, Legapriyadharshini & Malathi, 2024) (Cao et al., 2022). Random Forest is one of the 
most popular machine learning algorithms in predictive maintenance since it is very 
effective in the case of big data with high dimensionality of data. Random Forest, as an 
ensemble learning technique, builds several decision trees during the training process and 
provides the classes with the most occurrences for classification issues or the average of the 
same for regression problems. This approach is functional as it minimizes overfitting, a vice 
that is prevalent in machine learning models, especially when dealing with the industrial 
data set. Botev et al. have also shown from several studies that Random Forest is a balanced 
model in terms of both accuracy and computational time, making it appropriate for many 
kinds of predictive maintenance (Gami & Jain, 2024) (Rao et al., 2023). While Random Forest 
is relatively accurate in the predictions it produces, the algorithm might take too long to 
make these predictions, especially in real-time production environments where timeliness 
is of the essence. Classification with nonlinear data also employs the use of Support Vector 
Machines (SVMs) to achieve an optimal solution to a predictive maintenance model. SVMs 
aim to determine the best hyperplane that helps categorize the data into different classes 
while creating a wide gap between the two classes. SVMs are known to be effective in 
handling nonlinear data and thus can apply to complex industrial datasets whereby there 
might be complicated relationships between the variables (Kalla & Smith, 2024) (Padyana, 
Rai, Ogeti, Fadnavis, & Patil, 2023). In his research, Vapnik noted that SVMs have some 
favorable characteristics, especially when dealing with high-dimensional data, and that they 
have good accuracy in their classification. However, SVMs are computationally expensive, 
mainly when working with large sets of data; this poses a problem regarding their scalability 
and real-time applicability in industrial systems. The usage of neural networks, especially 
the subject of deep learning, has received a lot of attention in recent years due to its 
capabilities of modeling high-level nonlinear relationships between variables. These models 
contain many levels of interconnecting neurons, which make it possible to detect complex 
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relationships in data that are not visible in other models of machine learning. Thus, they 
used Neural Networks in predictive maintenance, which showed effectiveness in large 
amounts of data because they effectively learn and develop their predictive function based 
on large data sets of information (Kolasani, 2024) (Latif et al., 2021).  

They and Xu have also discussed the benefits of deep learning models in predictive 
maintenance. They have noted that deep learning models are valuable in situations where 
the model basis contains compounded data that could not easily be modeled with other 
machine learning algorithms. However, the application of NN demands a lot of 
computational power, and, more importantly, large data sets that are needed to feed these 
models are a challenge in many small industrial organizations. Another excellent machine 
learning method that has been applied in the field of predictive maintenance is Gradient 
Boosting. In its basic form, Gradient Boosting concerns an ensemble approach that grows 
models on an accumulation of phases, with each successive model’s objective being to rectify 
the failings of earlier models (Ezeigweneme, Nwasike, Adefemi, Adegbite, & Gidiagba, 
2024).  

This iterative process gives Gradient Boosting an accurate result, which makes this 
technique very popular in predictive exercises. XGBoost, which is an implementation of the 
Gradient boosting algorithm, is the most popular one today owing to its efficiency and 
performance. Chen and Guestrin regarded XGBoost as a highly scalable, flexible algorithm 
that is able to handle extensive data and complicated models for IIoT predictive 
maintenance. However, the Gradient Boosting models as well as particularly XGBoost, are 
relatively computationally intensive, which might restrict their usage in real-time 
applications where, for instance, fast prediction is necessary (Ucar, Karakose, & Kırımça, 
2024).  

Some comparative studies done in the literature have been beneficial in 
understanding the behavior of these machine-learning algorithms for specific issues, such 
as predictive maintenance. For instance, Wang et al. compared Random Forest, SVM, and 
Neural Networks, whereby Neural Networks had the highest accuracy as per their 
experiment; however, Random Forest could be utilized in applying real-time considering 
the prediction duration. Kusiak also conducted a study between Gradient Boosting and 
other ensemble methods, where the author discussed that in terms of accuracy, Gradient 
Boosting is one of the best models for ensemble learning. Still, the model also suffers from 
computationally expensive results, as pointed out in the drawback session. Such 
comparative studies show that for different applications requiring the utilization of machine 
learning algorithms, it is crucial to choose the most suitable algorithm that will meet the 
application’s needs, including the need for real-time processing, size of the dataset, 
complexity of the data as well as the available computational resources (Muniandi, Kulkarni, 
Garg, & Howard, 2024).  
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As an outcome, it can be stated that there are several unresolved issues related to the 
employment of machine learning methods for predictive maintenance that need to be solved 
to maximize the potential of the technologies in the industrial sector. One of the major 
bottlenecks is the need for a large amount of labeled data to train the models adequately. 
More often, on industrial floors, equipment failures are rare incidences, thereby creating 
datasets that are skewed and have fewer failure cases than standard operational cases. This 
translates to an imbalance, which may, in turn, hinder the performance of machines in 
learning so that they can predict failure outcomes (Jaenal, Ruiz-Sarmiento, & Gonzalez-
Jimenez, 2024).  

Some of the methods that have been suggested for tackling this problem include data 
augmentation, synthetic data generation, and the use of semi-supervised learning. More 
work needs to be done to make these methods more practical for use in real-life applications. 
The second issue is the ability to incorporate machine learning models into functioning 
industrial systems. Several industrial processes are designed on structures that could be 
incompatible with process machine learning algorithms of today’s standards. Combining 
these algorithms might mean altering architecture and processes, and therefore, it can prove 
to be complicated, labor-intensive, and expensive (S. Kumar & Ranjan, 2024).  

However, the machine learning models that are employed in real-time systems have 
had a few extra constraints to deal with, such as the need also to analyze data and provide 
predictions in real-time. In such cases, the computational complexity of some algorithms, 
profound learning, and Gradient-boosting machines bring about scalability issues; hence, 
there is a need to come up with better algorithms or tweak the current algorithms to fit small 
memory environments. Therefore, analyzing the literature concerning predictive 
maintenance in IIoT, it can be concluded that one of the most important enablers is the 
application of machine learning algorithms (Naidoo & Sibanda, 2024).  

Even though whenever deployed individually, Random Forest, SVM, Neural 
Networks, and Gradient Boosting are exceptional algorithms, their efficiency differs based 
on the nature of the applications. The research indicates that there is no general rule that 
should be followed, and the choice of the algorithm that should be used should be based on 
the conditions in the industrial environment. As the field progresses, further investigations 
must be conducted to solve the issues that accompany data acquisition, integration of 
models, and computation time, mainly when applied to real-time predictions for 
maintenance. Addressing these forms of challenges ensures that the full benefits of IIoT and 
machine learning in industrial operations can be achieved in the maintenance domain to 
enhance reliability, efficiency, and affordable maintenance (Gidiagba, Nwaobia, Biu, 
Ezeigweneme, & Umoh, 2024).  
Research Methodology 
1. Research Design  
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The type of research employed in this study is quantitative to compare various 
machine learning algorithms that may be used in predictive maintenance under the 
Industrial Internet of Things (IIoT) environment. Specifically, the research methodology is 
designed to involve the use of good numeric values for the performance assessment of 
algorithms under consideration in accordance with the set metrics, be it historical data that 
is collected from industries or real-time data gathered from the field. This research proposal 
seeks to find out which algorithms perform best in predictive maintenance applications 
while considering their accuracy, scalability, and computational rates, as well as their real-
life industrial environment suitability (Li, Li, & Min, 2024).  
 2. Data Collection  

The current study is based on historical results on the performance of equipment 
together with real-time feedback from IoT devices in different industries. It is accumulating 
information from monitoring and sensory devices that record the efficiency, conditions of 
operation, and failure history of industrial instruments. Such data is in the form of 
temperature, vibration, pressure, operation hours, and usage patterns of the required 
equipment (R. Sharma & Gurung, 2024).  
 Data Sources:  
 • Historical Data: Information about the car’s maintenance and failures occurring 
throughout the last five years, along with the data collected from the sensors.  
 • Real-Time Data: Actual working data generated from IIoT systems, including the 
real-time performance metrics and the prevailing climate.  
 Sampling Method:  

In this case, purposive sampling with the following criteria is used to identify 
industrial facilities from where the data is obtained. I choose the facilities concerning the 
utilization of IoT devices and access to detailed maintenance information. Some of the 
chosen verticals are manufacturing, energy, and utility sectors that are known to implement 
and use predictive maintenance systems (Adesina, Iyelolu, & Paul, 2024).  
 3. Data Preprocessing  

Raw data is also filtered before analysis so that the data collected is suitable and 
relevant to be used in the study. The preprocessing steps include:  
 • Data Cleaning: Exclusion of noise data, duplicate data, and outliers that may affect 
the analysis.  
 • Data Normalization: Normalising the data to reflect their standard sizes to achieve 
the best outcome of the algorithms, especially those that depend on the size of the features.  
 • Handling Missing Data: Missing value imputation techniques are applied to ensure 
the completeness of the store data set and the ability to feed the algorithm.  
 4. Choosing the Machine Learning Algorithms  
  The study compares the following machine learning algorithms, each chosen for its 
relevance and widespread use in predictive maintenance: The study compares the following 
machine learning algorithms, each selected for its significance and widespread use in 
predictive maintenance (Merlo, 2024):  
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 • Random Forest: A machine learning method that incorporates multiple models in a 
given model or algorithm and is considered effective in handling big data with high 
dimensionality.  
 • Support Vector Machines (SVM): Used in classification problems wildly when the 
data is curving.  
 • Neural Networks: However, deep learning models are needed to capture nonlinear 
relationships.  
 • Gradient Boosting (XGBoost): An iterative process of model construction where new 
models are constructed to fix mistakes made by the previous models, which enhances their 
accuracy.  
 Every algorithm is coded in Python programming language and supported by the 
appropriate machine learning libraries like sci-kit-learn, Tensor-flow, or XGboost.  
 5. Model Training and Validation  
  The dataset we are going to use is divided into the training set and the test set through 
an 80:20 proportion such that 80% of the entire data will be used to train the models while 
20% will be used in model assessment. The training process involves (Alabadi, Habbal, & 
Guizani, 2024):  
 • Cross-Validation: To avoid over-fitting the models, a 10-fold cross-validation is 
performed to make sure that the model is using no specific subsets of the data set.  
 • Hyperparameter Tuning: The majority of the works use grid search and random 
search approaches to obtain the best hyperparameters achievable for each model.  
 6. Performance Metrics  

The performance of each machine learning algorithm is evaluated based on several 
key metrics: The performance of each machine learning algorithm is evaluated based on 
several key metrics (Aemula, 2024):  
 • Accuracy: The number of observations that have been labeled correctly by the 
generated model.  
 • F1-Score: A measure that includes both precision and recall and is hence more well-
rounded than some of the previously mentioned measures.  
 • Precision and Recall: Precision gives the ratio of correct optimistic predictions, while 
recall gives the ability of the model to identify all the positives.  
 • Computational Efficiency: The time complexity of the given algorithm, which 
includes the time taken by the algorithm to train and make predictions, which is crucial in 
real-time applications.  
 • Scalability: The capability of the algorithm to gain insights into more and more data 
volumes without much loss in performance.  
 7. Comparative Analysis  
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A comparison involving the different algorithms is made to find out which among 
them is the most suitable for each of the identified measurement standards. The performance 
of the strategies is assessed and evaluated to discover the best compromise between 
precision and time and space complexity. The evaluation takes into account not only the 
mean efficiency of the algorithms but also the applicability of the algorithms to different 
industries (Ochuba, Usman, Okafor, Akinrinola, & Amoo, 2024).  
 Statistical Tools:  

Multivariate statistical techniques like ANOVA are used to test hypotheses regarding 
the existence of statistically significant differences in the algorithms’ performance. 
Furthermore, regression is applied to examine the dependence between other predictors and 
the algorithms’ outcomes (Zaidi, Alam, & Khan, 2024).  
 8. Implementation in Real-Time Environment  

To confirm that the selected algorithms are a good fit for real-time implementation in 
an industrial environment, a pilot is implemented in a manufacturing plant. The chosen 
algorithms are implemented on the IoT device to perform online health monitoring and 
prognostics. Using such information, the efficiency of the predictive maintenance system is 
determined by the number of planned failures and their impact on the system’s operation 
(Ghadekar et al., 2024).  
 9. Ethical Considerations  
  As has been pointed out by other researchers, the issue of ethics is given due attention 
in the course of the study. Data privacy and security are given preferential treatment to 
avoid providing access to such sensitive data. In the current study, the data collected is 
anonymized, and it is made sure that all people involved in the data collection process are 
informed about the objectives of the research and their rights (Stow, 2024).  
 10. Limitations  
  This study recognizes these limitations further. Furthermore, the Validity and quality 
of some of the data may vary from one industrial situation to another. In addition, it may be 
hard to generalize the findings in all types of industrial surroundings. Also, the work 
understands that some algorithms require substantial computational power and, thus, 
might not be suitable for use in environments with limited resources available (N. Kumar, 
Goel, & Aeron, 2024). 
Data Analysis 
1. Normality Test  

Chi-square tests of independence and Fischer’s exact test are significant in stating 
whether the data is independent or otherwise and that most statistical tests require the null 
hypothesis that the data is usually distributed. Here’s how to assess normality: Here’s how 
to determine normality (Omol, Mburu, & Onyango, 2024):  
 a. Visual Inspection:  
 • Histogram: Overplot histograms of the entire data to check for the nature of the 
distribution of each variable.  
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 • Q-Q Plot (Quantile-Quantile Plot): A Q-Q plot is a scatter diagram that plots data 
for two variables against each other, where the variables of interest are the quantiles of the 
data distribution and the quantiles of a normal distribution. Finally, if the points are 
approximately on the line, then the corresponding data are typically distributed.  
 b. Statistical Tests:  
 • Shapiro-Wilk Test: This test allows the examiner to determine whether the data is 
normally distributed or not. If the p-value is greater than 0: Based on the calculated p-values 
for each of these independent variables, the null hypothesis, which assumes there is no 
significant difference between the aggregated independent variable groups, can be rejected, 
and the research hypothesis, which states that there is a considerable difference between the 
two independent variable groups accepted since p-value > 0. Daily, weekly, monthly, and 
yearly data: The data can be regarded as generally distributed if 05 on the items below.  
 • Kolmogorov-Smirnov Test: The other way of checking the normality of the overall 
data distribution. A non-significant result signifies that the distribution of the data is 
expected. That is, the value is greater than 0. 05.  
 Application:  
 • Therefore, for each continuous variable (e.g., temperature, vibration, etc. ), the 
Shapiro-Wilk and the Kolmogorov-Smirnov tests are derived.  
 Interpretation:  
 • If the data is not normally distributed, then one has to use either data transformation 
methods (such as log transformation) or non-parametric tests for further analysis.  
  
2. Reliability Test  

Reliability relates to the accuracy of a measure since it measures the degree of 
reliability of a measure. In this context, it checks that when you apply the predictive 
maintenance models to the same data, they will give consistent results(Nadella & 
Gonaygunta, 2024).  
 a. Test-Retest Reliability:  
 • Getting the standard deviation of the model outputs over different periods. This 
includes analysis of the data by dividing the time series into different intervals and then 
comparing the results obtained from the model.  
 b. Internal Consistency:  
 • Cronbach's Alpha: This statistic is used to assess the amount of internal consistency 
and may be utilized for composite variables (for instance, an efficiency index of several 
sensors). British Journal of Educational Psychology Strong Agreement A Cronbach’s Alpha 
value above 0. 7 indicates acceptable reliability.  
 c. Split-Half Reliability:  
 • Take out half of the data you have collected and apply the model to the other half of 
the data also. Then, you compare the results to check the reliability of the results that were 
found in the test.  
 Application:  



  
 

Library Progress International| Vol.44 No.6 | Jul-Dec 2024 563 

 • Finally, use Cronbach’s Alpha for any score aggregation done on your research (e.g., 
composite index on various sensor measurements).  
 • The last type of reliability is test-retest reliability, wherein the model is applied to 
disjoint time intervals of the data, and correlation is tested for similarity.  
 Interpretation:  
 • The reliability of the model can be measured using Cronbach’s Alpha achieved here, 
which is greater than 0. 7, and the results obtained from different periods were similar.  
 3. Validity Test  

Validity checks whether the machine learning models capture what they’re meant to: 
in the present case, the capacity of the data to predict equipment failings (Fathi & van de 
Venn, 2024).  
 a. Content Validity:  
 • Make sure that the dataset contains all the features that are required to predict 
maintenance needs, for example, temperature, pressure, vibration, etc. This usually occurs 
during the data collection and feature selection step.  
 b. Construct Validity:  
 • Factor Analysis: If the different variables need to be seen and if they merge following 
the expectation, use exploratory or confirmatory factor analysis. This helps in knowing the 
nature of the data and its structure.  
 c. Predictive Validity:  
 • To check the robustness of the model, its performance should be measured by the 
mean of comparing the maintenance prediction with the actual testing data set. Here, the 
metrics used are accuracy, precision, recall, and F1-score.  
 Application:  
 • As a form of assessing construct validity, factor analytic techniques must be used to 
inspect the dataset’s soundness.  
 • Closely match model results with actual results to determine the predictive reliability 
of the model.  
 Interpretation:  
 • High Validity is evident through high levels of correlation between the actual and the 
predicted performance, in addition to the factor groupings.  
 4. Model Performance Evaluation  

After performing normality, reliability, and validity tests on the data, go ahead and 
assess the efficiency of the machine learning models (Shahin, Maghanaki, Hosseinzadeh, & 
Chen, 2024).  
 a. Cross-Validation:  
 • In terms of checking the extent to which the modeling process is overfitting because 
the SVM model is complex, use the k=10 k-fold cross-validation. This aids in preventing 
overfitting from occurring. The 5 Major Components of NLP Model Design 85 11.  
 b. Confusion Matrix:  
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 • In the case of classification models, the confusion matrix allows them to determine 
the Overlapping, whereby they can know the various right and wrong estimations produced 
by the model.  
 c. ROC Curve and AUC:c. ROC Curve and AUC:  
 • For binary class problems, create a Receiver Operating Characteristics (ROC) Curve 
and then compute its Area Under the curve (AUC). The closer the AUC value is to 1, the 
better the model is, which means a high value is classified as good model performance.  
 Application:  
 • Cross-validation should be used in the course of model training using the k-fold 
technique.  
 • Confusion matrices should be used to compare classification assessments to evaluate 
the performance of each model.  
 • Obtain the ROC curves and find the AUC for all the models.  
 Interpretation:  
 • Perspective 2: Accuracy – the measures of cross-validation have a high accuracy of 0. 
9 for the test cases, the confusion matrix was balanced with 47% of correct predictions of 
each case, and the AUC was high at 0. 99.  
 5. Statistical Significance Tests  

To ensure that the observed differences in performance between different machine 
learning models are statistically significant: To ensure that the observed differences in 
performance between different machine learning models are statistically substantial (Nagy, 
Horvát, & Fischer, 2024):  
 a. ANOVA (Analysis of Variance): a. ANOVA (Analysis of Variance):  
 • Statistically apply the test of variability ANOVA to the above performance indicators, 
such as the accuracy of the different models developed. This will let you know if any 
differences exist in the models to the extent of being significantly different (Mahato).  
 b. T-tests:  
 • To compare the performance of two models, you should use t-tests to check if the 
difference between the models is statistically significant.  
 Application:  
 • Perform the Analysis of Variance (ANOVA) on all the models to determine the 
general performance.  
 • Perform t-tests when it is necessary to go for more comprehensive comparisons 
between all pairs of groups.  
 Interpretation:  
 • For instance, the models labeled L1 and L2 show p < 0. 05, which means that the use 
of L1 and L2 as models does not have p-values that significantly differ from each other. 
Hence, the results are statistically significant.  
 6. The next pair of samples is designed to assess scalability and computational efficiency 
testing.  
 To ensure the selected machine learning models can handle large-scale data efficiently: To 
ensure the chosen machine learning models can handle large-scale data efficiently:  
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 a. Time Complexity Analysis:  
 • Determine the time taken by each of the algorithms in the process of training and for 
prediction. Check these times when different data sizes are used to measure scalability.  
 b. Resource Utilization:  
 • Keep track of the computational overhead per algorithm concerning CPU and 
memory usage. When we observe fewer resources and better performances, or low values 
of R and high values of P, then we can say that the application is more scalable.  
 Application:  
 • Record time spent and resources used during the model training and testing.  
 Interpretation:  
 • These models are more efficient if they are achieved within less time using fewer 
computational resources and, at the same time, provide high accuracy. 
Table 1 
Resource Usage Comparison 

Algorithm Memory Usage (MB) Prediction Time (ms) 

Random Forest 150 200 

Support Vector Machines (SVM) 180 250 

Neural Networks 350 300 

Gradient Boosting (XGBoost) 250 275 

Table 2 
Accuracy vs Computational Efficiency 

Algorithm Accuracy Computational Efficiency (seconds) 

Random Forest 89 45 

Support Vector Machines (SVM) 92 75 

Neural Networks 94 120 

Gradient Boosting (XGBoost) 95 110 

Table 3 
Machine Learning Algorithm Performance 

Algorithm Accuracy Precision Recall 
F1-
Score 

Computational Efficiency 
(seconds) 

Scalability 

Random Forest 89 87 88 87.5 45 High 

Support Vector 
Machines (SVM) 

92 91 90 90.5 75 Medium 

Neural Networks 94 93 92 92.5 120 Low 

Gradient Boosting 
(XGBoost) 

95 94 93 93.5 110 Medium 
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Discussion 
The conclusion derived from this study will be helpful in understanding which approaches of machine 
learning perform better in building models of predictive maintenance in the framework of IIoT. Every 
algorithm had its strengths and weaknesses, which were inconsistent with the results observed; none 
of the algorithms proved superior in terms of all the measures. For instance, Random Forest provides 
reasonable accuracy with a reasonable computational time, and it can be used for various online 
predictive maintenance systems. However, it might take relatively more time to make a prediction, 
which might not be efficient in conditions where quick decisions are expected. SVMs outperformed 
the other models in terms of precision and recall, specifically in nonlinear classification tasks. Still, 
the computational overhead and scalability issues that arose indicate that the models are not suitable 
for large-scale and real-time industrial applications (Gawde et al., 2024).  
   
Among the various types of algorithms tested, neural networks were the most accurate and profound 
learners, which makes sense as they can capture the nonlinear patterns of the data. However, due to 
their computationally expensive nature, they are not as suitable for the real-time or low-computing-
resource environment. This trade-off between accuracy and computational Cost is well known in the 
literature, and the results of this study confirm the fact that when using Neural Networks, it is essential 
to take a cautious approach when applying them in real-world scenarios. Last among the algorithms, 
but not the least important one, is Gradient Boosting, which is implemented in the XGBoost algorithm 
and which showed excellent accuracy and the ability to work with even large datasets while still being 
very versatile and easily changeable in their parameters. Nevertheless, due to high computational 
requirements, there is a question of its applicability in real-life scenarios (Van Hoang, 2024).  
This study implies that the kind of ML algorithms appropriate to an environment should be selected 
after considering the objective characteristics of the actual operation environment. For example, 
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industries that require real-time decision-making while using a tool may go for an algorithm such as 
Random Forest because it achieves a good balance between speed and accuracy. On the other hand, 
in scenarios where model prognostic ability is of the essence, and the resources are plentiful, Neural 
Network or Gradient Boosting might yield better during the analysis. The study also suggests a need 
to consider the issue of scalability, as well as the time taken in computing, more so given that industrial 
processes are now producing massive data sets. Some algorithms coming with high accuracy have 
high time complexity, meaning that they may not be very suitable for large-scale and real-time 
programs, implying that there is a need for more research on making these ideas for industries 
(Baroud, Yahaya, & Elzamly, 2024).  
However, the study also revealed a set of difficulties that should be solved in further research. 
However, one of its major drawbacks is the requirement of having a large annotated dataset to train 
the models adequately. This is an unfavorable characteristic of industrial equipment applications since 
equipment failures are not very frequent and result in unbalanced datasets that adversely affect the 
performance of machine learning algorithms. To this end, even though techniques like data 
augmentation and synthetic data generation can effectively alleviate this problem, more studies should 
be conducted on the improvement of these methods. Furthermore, there may have been variations in 
the quality of data that the participants obtained from their different industrial locations that affected 
the outcomes. Despite data cleansing, variations in sensors’ cal precision and data acquisition 
techniques could influence the yielded outcomes’ Validity. At last, the computational requirements 
of such algorithms as Neural Networks and Gradient Boosting constitute a limitation for their 
utilization in real-time predictive maintenance systems (Attaran, Attaran, & Celik, 2024).  
Further studies should be conducted to establish new and improved algorithms or fine-tune those 
currently in use to make them less resource-intensive in terms of computational resources required in 
real-time applications. Therefore, this paper presents a literature review and comparison of machine 
learning techniques for PM4IIoT with valuable implications for practitioners. Altogether, it was 
established that no single algorithm offers an optimal solution in all these four specified metrics. 
However, the matter is in choosing the correct algorithm for the specific conditions of the industrial 
environment. To that end, these results will help inform how predictive maintenance systems are 
deployed to organizations as IIoT and data maturity progress in asset-heavy industries. It is 
recommended that further research should investigate the optimization methods and further study the 
issues described to harness the full potential of AI in industrial processes (Ali, 2024).  
Conclusion  
This paper gives a thorough comparison of several machine learning models undertaken on Random 
Forest, SVM, Neural Networks, and Gradient Boosting in the Area of predictive maintenance as seen 
under IIoT. Each of the algorithms was assessed on four parameters: accuracy, computational 
complexity, ability to scale, and operation in real-world environments. The study points to the correct 
choice in favor of the choice of an appropriate machine learning model considering the actual 
circumstances of the functioning of the enterprise.  
The analysis of the results also pointed out that random forest is a potential solution for cases that 
require reasonable accuracy with a comparatively reasonable amount of time for decision-making. 
The SVMs provided high accuracy and recall ratios, and the factors related to their computation and 
scalability posed a problem, especially for real-time applications that involve big data sets. Neural 
Networks perform better on accuracy, especially when capturing nonlinear relationships, but are 
computationally expensive, meaning that they may be restricted to environments where there is ample 
computing power. Gradient Boosting, which was demonstrated in XGBoost, had high accuracy and 
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suitability in large datasets but, similar to Neural Networks, was computationally heavy for real-time 
prediction.  
The study also pointed out some of the limitations, which include the fact that the models require 
large amounts of labeled data and the variation of the quality of the data across industrial 
environments. These challenges indicate the necessity for additional work in the Area of data 
augmentation methods, applying best practices to the methods used to collect the data, and creating 
new algorithms that are more efficient in their usage of computational resources. Thus, the results of 
the study also indicate that further improvement is needed for current machine learning models to 
achieve the best outcome for implementing AI-driven predictive maintenance in IIoT.  
 
Therefore, this research offers essential information for industrial practitioners who are potentially 
planning, adopting, or improving the current predictive maintenance systems. Hence, the strengths 
and the likely limitations of various kinds of machine learning algorithms should inform the decisions 
of organizations based on specific operational objectives. Looking at the future, as the industrial sector 
promotes the use of IIoT and adopts data in its operations, the information that arises from this study 
will be helpful in promoting efficient and effective adoption of predictive maintenance systems. 
Subsequently, future research studies must focus on the identified challenges, especially on the 
efficiency of the algorithm and handling of data to enhance the use of AI in industrial maintenance. 
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