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Abstract- This paper proposes an advanced methodology for software defect prediction and functional testing of websites, 
integrating traditional techniques with Search-Based Software Testing (SBST). The approach combines thorough manual 
testing, automated test execution, and machine learning-based defect prediction to ensure comprehensive coverage and 
accurate defect detection. Initial steps include detailed requirement analysis, test planning, and test case development, 
followed by manual and automated functional testing. The SBST process iteratively refines test cases through 
initialization, fitness evaluation, selection, crossover, mutation, and survivor selection, optimizing their effectiveness in 
identifying defects. Integration with CI/CD pipelines ensures continuous validation, while continuous monitoring and 
feedback facilitate ongoing improvement. Detailed reporting and analysis guide proactive measures, enhancing the overall 
quality and reliability of web applications. 
Keywords: Software defect prediction, functional testing, Search-Based Software Testing (SBST), web application 
reliability, CI/CD integration; 

 
 
1. Introduction 
 Functional testing is a critical aspect of software quality assurance, aimed at ensuring that a software application 
operates in conformance with its requirements. Specifically, when it comes to software defect prediction for websites, 
functional testing becomes an invaluable tool. The rise of complex web applications, driven by the increasing reliance on 
internet-based services, has significantly elevated the need for robust testing methodologies. Websites today are intricate 
systems with numerous interdependent components, ranging from the front-end user interface to back-end databases and 
APIs. Ensuring the smooth and error-free operation of these components is crucial for maintaining user satisfaction and 
business credibility. Software defect prediction is a proactive approach that leverages historical defect data, machine 
learning algorithms, and statistical techniques to identify potential areas in the software that are likely to contain defects. 
This predictive capability allows developers and testers to prioritize their testing efforts, focusing on the most vulnerable 
parts of the application. Functional testing, in this context, involves verifying that each function of the website behaves as 
expected under various conditions, thus playing a pivotal role in the defect prediction process.  
 The primary objective of functional testing in the realm of software defect prediction is to validate the 
functionality of the website against its specified requirements and to detect any deviations that may indicate underlying 
defects. This involves a systematic examination of the website’s features, including user interactions, data processing, and 
interface elements. By simulating real-world usage scenarios, functional testing helps identify defects that may not be 
apparent during development but could significantly impact the user experience. One of the key challenges in functional 
testing for web applications is the dynamic and heterogeneous nature of web environments. Websites must operate 
flawlessly across different browsers, devices, and operating systems, each with its own quirks and capabilities. This 
variability necessitates comprehensive testing strategies that cover a wide range of configurations and user behaviors. 
Automated functional testing tools, such as Selenium, play a crucial role in this process by enabling repetitive and 
exhaustive testing across multiple environments. 
 Moreover, the integration of functional testing with software defect prediction models enhances the overall 
efficiency and effectiveness of the testing process. Predictive models can identify high-risk areas that are more likely to 
contain defects based on patterns in historical data. Testers can then focus their functional testing efforts on these high-
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priority areas, ensuring a more targeted and efficient testing process. This not only helps in early detection of defects but 
also reduces the overall cost and time associated with the testing phase. Another important aspect of functional testing in 
this context is the validation of non-functional requirements such as performance, security, and usability. These aspects 
are crucial for the overall quality of the website and can significantly influence the user experience. Functional tests can 
include scenarios that validate the website’s performance under different loads, its resilience against security threats, and 
the intuitiveness of its user interface. 
 
2. Literature Survey 
2.1 Gated Hierarchical LSTMs (GH-LSTMs)  
 H. Wang et.al proposed Software Defect Prediction Based on Gated Hierarchical LSTMs. Software defect 
prediction, aimed at assisting practitioners in efficiently allocating test resources, focuses on identifying potentially 
defective modules within software products. Traditional software features have shown limitations in capturing semantic 
information, prompting researchers to explore semantic features for building more effective defect prediction models. 
However, traditional features such as lines of code (LOC) still hold significant importance. Most existing research 
concentrates on using either semantic or traditional features exclusively. This article introduces a defect prediction method 
based on gated hierarchical long short-term memory networks (GH-LSTMs). The method employs hierarchical LSTM 
networks to extract semantic features from word embeddings of abstract syntax trees (ASTs) and traditional features from 
the PROMISE repository. A gated fusion strategy is used to combine the outputs of these hierarchical networks effectively. 
Experimental results demonstrate that GH-LSTMs outperform existing methods in both no effort-aware and effort-aware 
scenarios, highlighting the method's robustness in integrating diverse feature types for enhanced defect prediction. 
2.2Deep Learning-Based Defect Prediction Model 
 Qiao L et.al proposed Deep learning based software defect prediction. Software systems have grown increasingly 
large and complex, making the prevention of software defects a formidable challenge. Automatically predicting the 
number of defects in software modules is crucial for helping developers allocate limited resources efficiently. Various 
approaches have been developed to identify and rectify these defects at minimal cost, yet their performance still requires 
substantial improvement. This paper introduces a novel approach leveraging deep learning techniques to predict the 
number of defects in software systems. Initially, we preprocess a publicly available dataset through log transformation 
and data normalization. Subsequently, we model the data to prepare it as input for the deep learning model. This modeled 
data is then fed into a specially designed deep neural network to predict defect counts. Our approach is evaluated on two 
well-known datasets, demonstrating its accuracy and superiority over current state-of-the-art methods. On average, our 
method reduces the mean square error by over 14% and increases the squared correlation coefficient by more than 8%. 
2.3Tree-Based Ensembles 
 Aljamaan H et.al proposed Software defect prediction using tree-based ensembles. Software defect prediction 
remains a vital area of research in software engineering, crucial for guiding quality assurance efforts effectively. Ensemble 
learning in machine learning has shown substantial promise in improving predictive performance compared to individual 
models. This paper empirically investigates seven Tree-based ensemble methods for defect prediction, a domain where 
their effectiveness has not been extensively studied. Among these ensembles, two belong to the bagging category: Random 
Forest and Extra Trees, while the remaining five are boosting ensembles: AdaBoost, Gradient Boosting, Hist Gradient 
Boosting, XGBoost, and CatBoost. The study employs 11 publicly available MDP NASA software defect datasets to 
evaluate these methods. Results indicate that Tree-based bagging ensembles, specifically Random Forest and Extra Trees, 
outperform Tree-based boosting ensembles in defect prediction tasks. However, none of the Tree-based ensembles studied 
showed significantly lower performance than individual decision trees. Notably, Adaboost emerged as the least effective 
ensemble among the Tree-based methods evaluated in this study. 
2.4 WSHCKE Model 
 Zhu K et.al proposed Software defect prediction based on enhanced metaheuristic feature selection optimization 
and a hybrid deep neural network. Software defect prediction seeks to preemptively identify potential defects in new 
software modules using effective prediction models. However, achieving robust model performance is hindered by 
irrelevant and redundant features. Previous studies predominantly rely on conventional data mining or machine learning 
techniques, which often fall short in predictive accuracy. To address these challenges, we propose two innovations. First, 
inspired by search-based software engineering principles, we introduce an enhanced metaheuristic feature selection 
algorithm named EMWS. EMWS combines the Whale Optimization Algorithm (WOA) with Simulated Annealing (SA) 
to efficiently identify a concise set of highly relevant features. Second, we present WSHCKE, a unified defect prediction 
model that integrates feature selection results using a hybrid approach. WSHCKE leverages Convolutional Neural 
Networks (CNN) for abstract deep semantic feature extraction and Kernel Extreme Learning Machines (KELM) for robust 
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classification. Extensive experiments across 20 diverse software projects validate the efficacy of EMWS and WSHCKE, 
demonstrating significant improvements in prediction accuracy across four evaluation metrics. These advancements 
highlight the potential of integrating advanced metaheuristic techniques with hybrid deep learning models for enhanced 
software defect prediction. 
2.5 Tree boosting algorithm (XGBoost) 
 Esteves G et.al proposed Understanding machine learning software defect predictions. Software defects are a 
significant concern in software development, impacting both users and developers. Researchers have employed various 
techniques to mitigate these issues, with defect prediction using machine learning methods being prominent. These 
methods aim to preemptively identify potential defects in software modules before deployment, aiding developers in 
proactive defect management. However, existing literature often focuses on predicting defects using a wide array of 
software features, lacking clarity on the underlying reasons for software defects. Our study addresses this gap by 
employing the XGBoost tree boosting algorithm, which predicts module defectiveness based on easily computable module 
characteristics. To enhance model interpretability, we propose a model sampling approach that identifies optimal models 
using a minimal set of influential features. This approach not only improves predictive accuracy but also enhances model 
explainability, crucial for developers seeking insights into module-specific defect-prone features. Evaluation across 
diverse projects from Jureczko datasets demonstrates that our approach identifies project-specific influential features and 
achieves effective models with improved understandability, providing valuable insights for developers. 
3. Proposed Methodology 
 This methodology aims to leverage traditional functional testing techniques, enhanced by data-driven approaches 
and automated tools, to predict and identify defects in websites effectively. The approach combines thorough manual 
testing, automated test execution, and machine learning-based defect prediction to ensure comprehensive coverage and 
accurate defect detection.The methodology aims to integrate traditional functional testing with advanced search-based 
software testing (SBST) to predict and identify defects in websites effectively. This approach leverages both manual and 
automated testing techniques to ensure comprehensive coverage and accurate defect detection. 
3.1 Initial Functional Testing 
Requirement Analysis and Test Planning 
 To ensure comprehensive coverage and effective defect detection in website testing, the first step is to gather and 
analyze all functional requirements. This involves collaborating with stakeholders to document each feature, user 
interaction, and workflow the website must support. Following this, a detailed test plan is developed, outlining the scope, 
objectives, resources, schedule, and deliverables of the testing process. The test plan acts as a roadmap, guiding the testing 
team through the testing lifecycle and ensuring all aspects of the website are thoroughly examined. It defines the strategy 
for both manual and automated testing, ensuring alignment with project goals and timelines. 
Test Case Development 
 Creating detailed test cases covering all website functionalities, including links, forms, navigation, and user 
interactions, is essential for comprehensive testing. Each test case should meticulously outline the steps to verify the 
correct behavior of every feature, ensuring no aspect of the website is overlooked. Additionally, it is crucial to ensure that 
these test cases are traceable to specific requirements. This traceability guarantees that all client and stakeholder needs are 
addressed, providing a clear mapping between requirements and test scenarios. This approach not only enhances the 
thoroughness of the testing process but also facilitates efficient tracking and management of test coverage. 
Manual Functional Testing 
 Execute manual test cases to validate the functionality of each component comprehensively, ensuring that every 
feature works as intended. During this process, meticulously check all aspects of the website, including links, forms, and 
navigation, to confirm their performance aligns with the requirements. Record any defects or issues encountered in a 
detailed defect log, noting their nature, severity, and the affected components. This systematic approach ensures thorough 
coverage and provides valuable data for further analysis and remediation. By identifying and documenting these issues 
early, the process facilitates timely fixes and enhances the overall quality and reliability of the website. 
Automation of Test Cases 
 To ensure comprehensive testing, develop automated test scripts for repetitive and regression test cases using 
tools like Selenium or Cypress. These scripts should be designed to cover various browsers and devices, ensuring the 
website's responsiveness and cross-browser compatibility. By automating these test cases, repetitive tasks are streamlined, 
reducing manual effort and increasing testing efficiency. The scripts should be integrated into the continuous 
integration/continuous deployment (CI/CD) pipeline, enabling automatic execution with every code change. This 
approach ensures that any issues related to browser compatibility or device responsiveness are identified and addressed 
promptly, leading to a more robust and user-friendly website. 
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3.2 Proposed Search-Based Software Testing (SBST) for Test Case Generation 
Initialize Population 
 To effectively predict software defects in websites through functional testing, we define a population of potential 
test cases, each representing a possible input or sequence of actions on the website. Let 𝑃 = {𝑇ଵ, 𝑇ଶ, … , 𝑇௡} denote the 
population of test cases, where 𝑇௜an individual test case is. The initial population𝑃଴is generated with a diverse set of test 
cases, ensuring comprehensive coverage of the website's functionalities. Diversity is achieved by sampling test cases 
across different user scenarios and inputs, represented as𝑇௜  =  (𝑥ଵ, 𝑥ଶ, … 𝑥௠), where 𝑥௝denotes a specific action or input. 

This initialization step aims to maximize the probability of uncovering defects in various components. 
Fitness Evaluation 
 To enhance the effectiveness of test cases in identifying defects, it is essential to define fitness functions 
incorporating metrics such as code coverage (𝐶𝐶), path coverage (𝑃𝐶), and the ability to uncover edge cases or unusual 
scenarios (𝑈𝐸). The fitness function 𝐹(𝑇𝐶)for a test case 𝑇𝐶can be formulated as: 

𝐹(𝑇𝐶)  =  𝑤ଵ ∙ 𝐶𝐶(𝑇𝐶)  +  𝑤ଶ ∙ 𝑃𝐶(𝑇𝐶)  +  𝑤ଷ ∙  𝑈𝐸(𝑇𝐶) 
 Where𝑤ଵ,𝑤ଶ, and 𝑤ଷare weights assigned to each metric, reflecting their importance. This composite fitness 
function ensures comprehensive evaluation, guiding the selection of highly effective test cases for defect identification. 
Selection 
 In this methodology, selection mechanisms such as tournament selection and roulette wheel selection are 
employed to choose parent test cases based on their fitness scores. In tournament selection, a subset of test cases is 
randomly chosen, and the one with the highest fitness is selected as a parent. Mathematically, if 𝑇  is the tournament size, 
and𝐹(𝑖) is the fitness of the𝑖 -th test case, then𝑃௦௘௟௘௖௧௘ௗ  =  𝑚𝑎𝑥{𝐹(𝑖ଵ), 𝐹(𝑖ଶ), … , 𝐹(𝑖்)} . In roulette wheel selection, each 

test case 𝑖is chosen with a probability 𝑃(𝑖) =
ி(௜)

∑ೕ ி(௝)
, ensuring that higher fitness test cases have a greater chance of 

being selected. These mechanisms optimize the genetic algorithms ability to explore and exploit the search space 
efficiently, enhancing the overall effectiveness of the test case generation process. 
Crossover 
 In implementing crossover operations for selected parent test cases, the objective is to combine their sequences 
to create diverse offspring while preserving logical action sequences. Let 𝑃ଵand 𝑃ଶrepresent two parent test cases. The 
crossover operation can be expressed as: 

𝑂௜  = ∝  𝑃ଵ  + (1 − ∝ 𝑃ଶ 
 Where∝ is a crossover rate between 0 and 1, determining the proportion of each parent contributing to the 
offspring𝑂௜ . This operation ensures variations by interleaving steps from both parents, maintaining logical coherence. By 
introducing controlled variations, we enhance the robustness and coverage of the test suite. 
Mutation 
 In the context of software defect prediction for websites, applying mutation operations to offspring test cases is 
crucial for generating diversity and exploring new scenarios. Mutations typically involve small changes aimed at 
improving test case effectiveness. Examples include altering input values, rearranging action sequences, or adjusting 
conditional statements within test steps. These operations help in uncovering edge cases and potential defects that might 
not be captured by initial test scenarios. By introducing controlled variations through mutations, the methodology ensures 
comprehensive coverage of possible system behaviors, thereby enhancing the reliability and effectiveness of the functional 
testing process in identifying potential defects in web applications. 
Fitness Evaluation of Offspring 
 In evaluating the fitness of mutated offspring test cases, it's crucial to apply consistent fitness functions used for 
parent test cases. This ensures that the effectiveness of each mutated offspring is assessed based on predefined criteria 
such as code coverage, error detection, or functional validation. By maintaining uniformity in fitness evaluation, we can 
objectively identify mutated test cases that demonstrate potential in uncovering defects. This process involves comparing 
the performance metrics of mutated offspring against those of parent test cases, aiming to select variants that not only 
maintain the integrity of logical sequences but also enhance the overall efficacy of the testing strategy. 
Survivor Selection 
 In the context of evolutionary algorithms applied to software testing, the selection and replacement of test cases 
play a crucial role in optimizing test suite effectiveness. Following the creation of offspring through crossover and 
mutation operations, the next step involves selecting the fit individuals from the combined population of current test cases 
and offspring. This selection process is typically guided by a fitness function 𝑓, which evaluates the effectiveness of each 
test case based on criteria such as code coverage, fault detection capability, or execution time. Mathematically, the 
selection can be represented as: 
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𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠 =  𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 
Subsequently, less effective test cases are replaced with better-performing ones, aiming to enhance the overall quality and 
efficiency of the test suite. This iterative process of selection and replacement contributes to the continual improvement 
of software testing methodologies, ensuring robust test coverage and defect detection capabilities. 
Termination Criteria 
 Defining termination criteria is crucial in evolutionary processes like genetic algorithms used in software testing. 
Common criteria include reaching a maximum number of generations, achieving convergence in fitness scores, or 
adhering to predefined time limits. For instance, the algorithm may terminate after a fixed number of iterations𝐺௠௔௫, 
ensuring computational efficiency. Alternatively, convergence criteria involve halting when fitness scores stabilize over 
successive generations, indicating optimal test suite performance. Time limits restrict execution duration to manage 
computational resources effectively. These criteria collectively ensure the algorithm's efficiency and effectiveness in 
generating high-quality test cases while preventing unnecessary computation beyond specified constraints. 
Search-Based Software Testing (SBST) focusing on test case generation 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑎𝑟𝑐ℎ𝐵𝑎𝑠𝑒𝑑𝑇𝑒𝑠𝑡𝑖𝑛𝑔(): 
Step 1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() 
 This step generates an initial set of diverse test cases covering various website functionalities. 
Step 2: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 
 Assess the effectiveness of each test case based on predefined criteria such as code coverage and fault detection. 
Step 3: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠 =  𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 
 Select the best-performing test cases as parents for the next generation using methods like tournament or roulette 
wheel selection. 
Step 4: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠) 
 Combine sequences from selected parents to create new test cases, introducing variation while maintaining 
logical steps. 
Step 5: 𝑚𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 
 Apply small changes to offspring to explore new scenarios and enhance test coverage. 
Step 6: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 
 Assess the fitness of the mutated test cases to ensure they meet effectiveness criteria. 
Step 7: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑆𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑚𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 
 Combine and select the best individuals from the current population and the new offspring to form the next 
generation. 
Step 8: Output 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
 After meeting the termination criteria, return the optimized set of test cases, ready for comprehensive website 
validation. 
 This iterative process ensures continuous improvement of the test cases, enhancing their ability to predict and 
identify defects effectively. 
 Upon completing the optimization process, the methodology delivers a refined population of test cases, 
systematically developed through initialization, fitness evaluation, crossover, mutation, and survivor selection. These 
robust scenarios effectively validate website functionalities, ensuring deployment-ready comprehensive testing. 
 Here's an algorithm summarizing the methodology for functional testing on software defect prediction for 
websites: 
 
 
Algorithm: Functional Testing On Software Defect Prediction 
Step 1: Requirement Analysis and Test Planning 
● Gather and analyze all functional requirements of the website in collaboration with stakeholders. 
● Document features, user interactions, and workflows that the website must support. 
● Develop a comprehensive test plan outlining scope, objectives, resources, schedule, and deliverables. 
Step 2: Test Case Development 
● Create detailed test cases covering all functionalities (links, forms, navigation, etc.). 
● Ensure each test case is traceable to specific requirements for clear mapping and coverage. 
Step 3: Manual Functional Testing 
● Execute manual test cases to validate functionality comprehensively. 
● Check all aspects including links, forms, and navigation for performance alignment with requirements. 
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● Record defects encountered in a detailed defect log, noting severity and affected components. 
Step 4: Automation of Test Cases 
● Develop automated test scripts using tools like Selenium or Cypress. 
● Design scripts to cover various browsers and devices for responsiveness and compatibility testing. 
● Integrate scripts into CI/CD pipeline for automatic execution with each code change. 
Step 5: Search-Based Software Testing (SBST) for Test Case Generation 
● Initialize Population: Generate an initial population of diverse test cases covering various user scenarios. 
● Fitness Evaluation: Define fitness functions incorporating metrics like code coverage, path coverage, and edge 
case detection. 
● Selection: Use selection mechanisms (e.g., tournament selection, roulette wheel selection) to choose parent test 
cases based on fitness. 
● Crossover: Combine selected parent test cases using crossover operations to create diverse offspring while 
maintaining logical sequences. 
● Mutation: Apply mutation operations to introduce controlled variations in offspring test cases. 
● Evaluate Fitness of Offspring: Assess the effectiveness of mutated offspring using predefined fitness functions. 
● Survivor Selection: Replace less effective test cases in the current population with better-performing offspring 
based on fitness. 
● Termination Criteria: Define criteria (e.g., maximum generations, fitness convergence, time limits) to end the 
evolutionary process. 
Step 6: Output 
● Return the final population of optimized test cases that effectively validate various functionalities of the website. 
● Ensure all test cases meet termination criteria and maximize fitness through evolutionary techniques. 
 This algorithm outlines a systematic approach to functional testing enhanced by data-driven and automated 
methods, combined with SBST for effective defect prediction and identification in web applications. 
3.3 Integration and Continuous Testing 
Integration with CI/CD Pipelines 
 Integrating automated and search-based test cases into the CI/CD pipeline ensures rigorous testing throughout 
the software development lifecycle. Automated tests, including unit tests and integration tests, verify code functionality 
on every commit and merge, ensuring early detection of defects. Concurrently, search-based testing enriches the test suite 
by generating diverse scenarios and edge cases, enhancing test coverage. By configuring these tests to run automatically 
during CI/CD pipelines triggered on code commits, merges, and deployments we ensure continuous validation of code 
quality and functionality. This integration not only accelerates feedback cycles but also fosters reliable software releases, 
mitigating risks associated with bugs and ensuring robust application performance. 
Continuous Monitoring and Feedback 
 In the context of automated testing for software systems, continuous monitoring of test results plays a crucial 
role in maintaining software quality. This process involves systematically collecting and analyzing data on various metrics 
such as test performance, defect detection rates, and test coverage. By gathering comprehensive insights from these 
metrics, teams can identify areas for improvement and optimize testing strategies effectively. Feedback obtained from 
continuous monitoring guides the refinement of test cases and testing methodologies, ensuring that subsequent test runs 
are more effective in identifying defects and enhancing overall software reliability before deployment. This iterative 
approach fosters continuous improvement in software testing practices. 
Reporting and Analysis 
 After executing functional testing on software defect prediction for websites, detailed test reports are generated 
to document identified defects, their severity levels, and the functionalities they affect. These reports serve as a 
comprehensive record of testing outcomes, facilitating informed decision-making in bug resolution. Analyzing these 
results reveals patterns and identifies areas susceptible to defects, guiding proactive measures for improvement. 
Actionable insights derived from the analysis enable developers to prioritize and address critical issues promptly, while 
also implementing preventive strategies to mitigate future defects. This holistic approach ensures robust software quality 
assurance, enhancing overall reliability and user satisfaction. 
 By integrating SBST with traditional functional testing methods, this proposed methodology aims to enhance the 
defect prediction and detection capabilities for websites, ensuring a robust and reliable user experience. 
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4. Experimental Results  
4.1 Coverage (%) 
Indicates how much of the software is covered by the test cases. Higher percentages suggest better coverage. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (%) =  
𝑁𝑜 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
∗ 100 

No of Iterations DL based Model GH-LSTMs Proposed SBST-FT 

Iteration 1 85 80 90 

Iteration 2 82 78 89 

Iteration 3 88 81 92 

Iteration 4 84 79 91 

Iteration 5 86 77 93 

Table 1.Comparison Table of Coverage 
In this table 1, shows test coverage percentages for three different models across five iterations. Coverage indicates the 
proportion of software elements tested, with higher percentages reflecting better coverage. The DL based Model has 
coverage percentages ranging from 77% to 88%, the GH-LSTMs model ranges from 77% to 81%, and the Proposed 
SBST-FT model achieves the highest coverage, ranging from 89% to 93%. This suggests that the Proposed SBST-FT 
model offers superior test coverage compared to the other models. 

 
Figure 1.Comparison Chart of Coverage 
The Figure 1 displays test coverage percentages for three models DL based Model, GH-LSTMs, and Proposed SBST-FT 
across five iterations. The Proposed SBST-FT model consistently achieves the highest coverage, ranging from 89% to 
93%, indicating superior testing of software elements. In contrast, the DL based Model shows coverage between 77% and 
88%, while GH-LSTMs range from 77% to 81%. These results suggest that the Proposed SBST-FT model provides the 
most comprehensive testing, ensuring better software quality and reliability. 
4.2 Fault Detection Rate (%)  
Ratio of detected faults to total faults in the software.  

𝑭𝒂𝒖𝒍𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒆 (%) = ൬
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅 𝒇𝒂𝒖𝒍𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒇𝒂𝒖𝒍𝒕𝒔
൰ × 𝟏𝟎𝟎 

No of Iterations DL based Model GH-LSTMs Proposed SBST-FT 

Iteration 1 75 70 85 

Iteration 2 78 72 88 

Iteration 3 80 74 90 

Iteration 4 77 71 87 

Iteration 5 79 73 91 

Table 2.Comparison Table of Fault Detection Rate 
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In this table 2, each percentage represents the ratio of detected faults to the total number of faults in the software for each 
iteration and model. The Proposed SBST-FT model consistently shows higher fault detection rates, indicating better 
performance in identifying faults compared to the DL based Model and GH-LSTMs. 

 
Figure 2.Comparison Chart of Fault Detection Rate 
In this figure 2, the proposed SBST-FT model (green bars) consistently shows the highest Fault Detection Rate across all 
five iterations, indicating superior performance in detecting faults compared to the other two models. The DL based Model 
(blue bars) has a higher FDR than GH-LSTMs (red bars) in all iterations but is lower than the proposed SBST-FT model.  
The GH-LSTMs model consistently has the lowest FDR among the three models, suggesting it is the least effective at 
detecting faults. 
4.3 Execution Time (hours)  
The time taken for test case generation and evaluation. Shorter times are preferable for efficiency. 

𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 

No of Iterations DL based Model GH-LSTMs Proposed SBST-FT 

Iteration 1 5.0 4.5 3.5 

Iteration 2 5.2 4.7 3.6 

Iteration 3 5.1 4.6 3.4 

Iteration 4 5.3 4.8 3.7 

Iteration 5 5.0 4.5 3.5 

Table 3.Comparison Table of Execution Time 
In this table 3, execution time for the DL based Model ranges from 5.0 to 5.3 hours across the five iterations. For the GH-
LSTMs model, the execution time ranges from 4.5 to 4.8 hours across the iterations. The Proposed SBST-FT model shows 
an execution time ranging from 3.4 to 3.7 hours across the iterations. This model consistently demonstrates the shortest 
execution time, suggesting that it is the most efficient among the three models in terms of test case generation and 
evaluation. 
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Figure 3.Comparison Chart of Execution Time 
The figure 3, illustrates the Execution Time in hours across five iterations for three models: DL based Model, GH-LSTMs, 
and Proposed SBST-FT. The DL based Model (blue bars) consistently takes the longest time, ranging from 5.0 to 5.3 
hours. The GH-LSTMs model (red bars) has a shorter execution time, between 4.5 and 4.8 hours. The Proposed SBST-
FT model (green bars) consistently shows the shortest execution time, ranging from 3.4 to 3.7 hours. This indicates that 
the Proposed SBST-FT model is the most efficient in test case generation and evaluation. Overall, the Proposed SBST-
FT outperforms the other two models in terms of execution time efficiency. 
5. Conclusion 
 In this paper, proposed methodology effectively combines traditional functional testing with advanced Search-
Based Software Testing (SBST) to enhance software defect prediction and detection for websites. By integrating manual 
and automated testing techniques, along with machine learning-based defect prediction, this approach ensures 
comprehensive coverage and accurate defect identification. Iterative refinement of test cases through SBST and seamless 
integration with CI/CD pipelines enable continuous validation and improvement. Detailed reporting and analysis provide 
actionable insights, guiding proactive measures to address defects and improve web application reliability. This 
comprehensive methodology ensures robust, high-quality web applications, delivering a reliable user experience. 
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