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Abstract 

Whenever the system states fall into one of three categories—Operating States, Failed-Safe States, or Failed-Unsafe 

States—a 3-state Markov model is employed to represent some safety-critical systems. The safety and security of the 

system are estimated using these models. When the system fails, a new model is constructed based on these models, with 

varying metrics for various fault states. The repair procedure is used for Failed-Safe States but not for the other failed 

states. Operating times, repair times, and coverage to various failure states are all impacted by frequent repairs. This repair 

procedure is described using the 𝛼 – Series Process, which also yields various system safety indices. 
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DEFINITIONS 

Definition 1: It is stated that 𝑋 is stochastically greater than 𝑌 (or 𝑌 is stochastically less than 𝑋) given two random 

variables, 𝑋 and 𝑌, if 

𝑃(𝑋 >  𝛼) ≥ 𝑃(𝑌  > 𝛼) for all real 𝛼, and written as 

𝑋 ≥st  𝑌  or 𝑌  ≤st  𝑋. 

Definition 2: The sequence {𝜉n, 𝑛 = 1,2, … } is assumed to be a collection of independent, nonnegative random variables. 

{𝜉n, 𝑛 = 1,2, … } is referred to as a 𝛼 – Series process if the distribution function of 𝜉n is 𝑆n(𝑡) = 𝑆(𝑛a𝑡) for some 𝑎 > 

0, and all 𝑛 = 1,2, … , {𝜉n, 𝑛 = 1,2, … } is stochastically increasing, meaning that 

𝜉n  ≤st  𝜉n+1 ,  𝑛 = 1,2, … 

1. INTRODUCTION 

Under actuality, the failures result under various circumstances from various perspectives. Generally speaking, these 

failure scenarios fall into one of two groups under the safe view: failed-safe states or failed-unsafe states. These safety- 

critical systems are modelled using a 3-state Markov model in order to analyse these issues. Numerous studies have been 

conducted in this area, including those by Bukowsiki & Goble (2001), who each used Markov Chain to contribute to this 

type of model. Additionally, Cowing et al. (2004), DeLong et al. (2005), Inagaki & Ikebe (1989), and Zhou (1987) 

discussed the models' indices or metrics. This three-state model was recently established by Cui et al. (2006). 

However, the majority of these studies only addressed the scenario in which the system returns to a state "as good as new" 

following repairs, or they did not address the effects of the maintenance. In actuality, the system may not be as good as  

new following the repair due to wear and age. Park (1979), Kijima (1989), and Brown & Proschan (1983) all contributed 

to the unsatisfactory maintenance. It might be more realistic to anticipate that a decaying system will have a lower lifespan 

following repair, but that the intervals between repairs will lengthen. Lam (1988) originally proposed a geometric process 

repair model to simulate such a system. Additionally, Zhang (1994) and Finkelstein (1993) created this repair model. 

In [], the authors analyse the safe-critical system problem using the geometric process repair model and adjust the 3-state 

Markov model to better fit the practice. 
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𝜆𝐶 𝜆𝑑𝐶2a 

 
 

In this article, we employ the partial product process repair model to analyze the problem of the safe-critical system and 

make the 3-state Markov model more accord to the practice. For most systems, when they fail, two kind's failed-states 

occur. 

Repair measures are implemented right away for the Failed-Safe State, bringing the system back to a less-than-ideal 

condition. Since it could result in certain mishaps, remedial procedures are not suggested for the Failed-Unsafe State. 

Following a repair, the system's lifespan will decrease, but the duration of subsequent repairs will increase. The coverage 

of the two failed states varies depending on whether it is caused by natural or man-made forces. Typically, following the 

repair procedure, the coverage to Failed-Safe State may decrease. After multiple repairs, we believe the system is in an 

astatic condition. The repair process is halted when the system fails once more, whether it goes into the Failed-Safe or 

Failed-Unsafe states. 

In Section 1, we will present a model based on the aforementioned scenarios. A few indexes for the system safety aspects 

are developed in Section 2. Finally, the application of the solutions to a specific issue is demonstrated with a numerical  

example. 

2. ASSUMPTIONS OF THE MODEL 

1) A fresh system is installed initially. 

2) There are two failure states when the system is unavailable: There are two types of states: Failed-Safe and Failed- 

Unsafe. The system has failed to function, but in a safe way, and this is known as the Failed-Safe State. When a system 

fails to function as intended and does so in an unsafe way, it is said to be in the Failed-Unsafe State. 

3) The system cannot be "as good as new" after the repair, but it will be accepted as soon as it reaches a Failed-Safe State. 

Specifically, 𝑋n ≤st 𝑋n–1 ≤st … ≤st 𝑋2 ≤st 𝑋1 , A combination of 𝑋1 and 𝑌1 ≤st 𝑌2 ≤st … ≤st 𝑌n–1 ≤st 𝑌n , 

The distribution functions of 𝑋n and 𝑌n :, are, respectively, 

𝐹n(𝑡) = 𝐹(𝑛a𝑡), 𝐺n(𝑡) = 𝐺(𝑛b𝑡), 𝑎 ≥ 1, 𝑏 ≥ 1; 

𝑛 = 1,2,3, …. 

𝑋i  and 𝑌i  have the exponential distributions with 𝐹1(𝑡) = 1 − 𝑒–ఒt ,    𝐺1(𝑡) = 1 − 𝑒–μt  and 𝑋n , 𝑌n  are independent. 

4) One mitigation coverage is 1 − 𝐶, while the other mitigation coverage is 𝐶, which leads to a failed-safe condition. 

5) The system cannot be "as safe as new" with the repairs. Specifically, 𝑑n–1𝐶 is the mitigation coverage of the Failed- 

Safe state following the 𝑁th repair. 

6) After the 𝑁th repair, we believe the system is in an astatic state since the repairs make it more unsafe. If the system 

fails again, it either goes into the Failed-Safe state or the Failed-Unsafe state, and the repair process is halted. The repair 

procedure is terminated once the system is in the Failed-Unsafe State. 

The system may be modelled using a Markov model as the Failed-Unsafe state is an absorbing state and the 

distributions of the sojourn intervals in the Operating States and Failed-Safe States are all exponential distributions. This 

model contains 2𝑁 + 3 states based on assumptions 5) and 6). To keep things simple, let the operational states be the first, 

third,…, (2𝑁 + 1)th states, the  failed-safe  states  be  the  second,  fourth,…, (2𝑁 + 2)th  states,  and  the  absorbing 

(2𝑁 + 3)th state be the failed-unsafe state. 

Figure      1      illustrates      the      connections       between       the       states       and       the       transition       rates.  

The Markov model transition rate matrix 𝐴 is obtained from figure 1. 

The differential equations are then resolved, 

d 𝑃(𝑡) = 𝑃(𝑡)𝐴 … (2) 
dt 

We obtain 𝑃(𝑡), the Markov model transition probability matrix, with the initial condition 𝑃(0) = 1 (the identity matrix). 

The solution to (2) is 

𝑃(𝑡) = exp (𝐴𝑡) … (3) 
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 𝐴 =  

−𝜆 𝜆𝐶 0  0 0 0 0 ⋯ ⋯ 0  𝜆(1 − 𝐶) 

 
−𝜇 

 
𝜇 0 0 0 0 ⋯ ⋯ 0 0 

 

−𝜆2a 𝜆𝑑𝐶2a 0 0 0  ⋯ ⋯ 0  𝜆(1 − 𝑑𝐶)2a 

−𝜇2b 𝜇2b 0 0 
 

⋯ ⋯ 0 0 
 

 
−𝜆3a 𝜆𝑑2𝐶3a 0 

 
⋯ ⋯ 0 

 
𝜆(1 − 𝑑2𝐶)3a 

  
−𝜇3b 

 
𝜇3b ⋯ ⋯ 0 

 
0 

 

⋯ ⋯ ⋯ ⋯ ⋯ 

 
−𝜆𝑁a 𝜆𝑑N–1𝐶𝑁a ⋯ 0 𝜆(1 − 𝑑N–1𝐶)𝑁a 

 
−𝜇𝑁b 

 
𝜇𝑁b 

 
0 

 
0 

  
0 0 

   
0 

 

 
So, from assumption 1), 𝑝(0) = [1,0, … ,0], we get 𝑝(𝑡), probability vector for the Markov model at time 𝑡, from the 

following formula, 
  

𝑝(𝑡)  =  𝑝(0)𝑃(𝑡) … (4) 

But, it is difficult to get an analytic expression of 𝑃(𝑡) by using equation (3). Usually, for the numerical situation, we use 

the Laplace transform to get the following equation 

𝑃∗(𝑠) = 𝑃(0) (𝑠𝐼 − Q)–1 … (5) 

Thus the inverse Laplace transform of 𝑃∗(𝑠), we can get the formula of 𝑃(𝑡). 

3. INDEXES FOR SYSTEM SAFETY 

Once the 𝑃(𝑡) is fixed, we also know the expression of 𝑝i(𝑡). Then we can find some important indexes for the system. 

1. 𝑆(𝑡), Safe as a function of time 

By assumption (7), we get 
N+1 

𝑝0(𝑡) = Σ 𝑝2i–1(𝑡) … (6) 

i=1 
N+1 

𝑝rs(𝑡) = Σ 𝑝2i(𝑡) … (7) 

i=1 

and 

𝑝FU(𝑡) = 𝑝2N+3(𝑡) … (8) 

𝑆(𝑡) is the probability the system resides at the Operating States or Failed-Safe States at time. So, 

𝑆(𝑡) = 𝑝0(𝑡) + 𝑝FS(𝑡) … (9) 

2. 𝐶sys, System coverage 

System coverage 𝐶sys is the probability that the transition will occur from the Operational State to either the Failed-Safe 

State or the Failed-Unsafe State, given 

that the transition to a failure state does occur, when 𝑡 → ∞. 

𝐶sys = lim
 pFS(t)  

t→∞ pFS(t)+pFU(t) 
… (10) 

3. MITUF, Mean TIme to Unsafe Failure 

Let Z be the time to Unsafe Failure. Z can be expressed by 𝑋n and 𝑌n. After 𝑖 repairs, the probability that the system first 

enters the FU state is 

𝐶. 𝑑𝐶 … 𝑑i–1𝐶. (1 − 𝑑i𝐶) = 𝑑 
i(i—1) 

2     𝐶i(1 − 𝑑i𝐶)   … (11) 
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j=1 

i=1 

 
 

and the time to Unsafe is 

𝑍 = ∑i    (𝑋j + 𝑌j) + 𝑋j+1, 

For different situations, Z has different the expression. The details can be found in table 1. 

 

 
Table.1 The expressions of Z for different situations. 

Numbers of 

Repairs 

 
0 

 
1 

 
… 

 
N 

 
Z 

 
𝑋1 

 
𝑋1 + 𝑌1 + 𝑋2 

 
… 

N 

Σ(𝑋i + 𝑌i) + 𝑋n+1 

i=1 

probability 1 − 𝐶 𝐶(1 − 𝑑𝐶)  N(N—1) 

𝑑    2       𝐶N(1 − 𝑑N𝐶) 

 
Because 𝑋n, 𝑌n are independent respectively, then we get 

𝑀𝑇𝑇𝑈𝐹 =  (𝐼 − 𝐶)𝐸(𝑋i) 

N 
n=1 [𝑑 

n(n—1) 

2      𝐶n(1 − 𝑑n𝐶)(∑n (𝐸(𝑋i) + 𝐸(𝑌i)) + 𝐸(𝑋n–1))] … (12) 

Details about these indexes are introduced by DeLong et a/(2005). 

4. NUMERICAL EXAMPLE 

We assume the new system's life 𝑋1 and the first repair time all have the exponential distributions with parameters 

𝜆 = 3 and 𝜇 = 2 respectively. Let the ratio of the 𝛼 – Series Process 𝑎 = 1.4, 𝑏 = 0.4 and the other parameters 𝐶 = 

0.5, 𝑑 = 0.8, 𝑁 = 3 respectively. 

By equation (1), we have, 

 

⎢ 
⎢ 
⎢ 

𝐴 = ⎢ 

⎢ 
⎢ 
⎢ 
⎣ 

 
𝑝2(𝑡) = 1.5𝑒–2t − 1.5𝑒–3t, 

 

 

 

 

 

 
𝑝1 (𝑡) = 𝑒–3t, 

 
𝑝3(𝑡) = 0.51𝑒–2t − 0.61𝑒–3t + 0.1𝑒–7.92 

𝑝4(𝑡) = 2.51𝑒–2t − 7.8𝑒–2.64 + 5.35𝑒–3t 

𝑝5(𝑡) = 0.55𝑒–2t − 1.82𝑒–2.64t + 1.29𝑒–3t − 0.03𝑒–7.92t 

𝑝6(𝑡) = 2.24𝑒–2t − 17.48𝑒–2.64t + 55.51𝑒–3t − 40.29𝑒–3.1t + 0.03𝑒–7.92 

𝑝7(𝑡) = 0.58𝑒–2t − 4.79𝑒–2.64t + 15.71𝑒–3t − 11.51𝑒–3.1t + 0.01𝑒–7.92t 

𝑝8(𝑡) = 0.02 − 1.3𝑒–2t + 8.11𝑒–2.64t − 23.4𝑒–3t + 16.58𝑒–3.1t − 0.01𝑒–7.92 

𝑝9 (𝑡) = 0.98 − 6.6𝑒–2t + 23.78𝑒–2.64   − 53.34𝑒–3t + 35.23𝑒–3.1t − 0.04𝑒–7.92t 

From equations (6), (7) and (8), we get the probabilities in the Operating States, the Failed-Safes State and the Failed- 

Unsafe States at time t, respectively, 
3 

𝑝0(𝑡) = Σ 𝑝2i–1(𝑡) = 𝑝1(𝑡) + 𝑝3(𝑡) + 𝑝5(𝑡) + 𝑝7(𝑡) 

i=1 

= 1.64𝑒–2t − 6.61𝑒–2.64t + 17.39𝑒–3t − 11.51𝑒–3.1t + 0.08𝑒–7.92t 
3 

𝑝FS(𝑡) = Σ 𝑝2(𝑡) = 𝑝2(𝑡) + 𝑝4(𝑡) + 𝑝6(𝑡) + 𝑝8(𝑡) 

i=1 

= 0.02 + 4.95𝑒–2t − 17.17𝑒–2.64t + 35.96𝑒–3t − 23.71𝑒–3.1t + 0.02𝑒–7.92t 

𝑝FU(𝑡) = 𝑝9 (𝑡) 

= 0.98 − 6.6𝑒–2t + 23.78𝑒–2.64 − 53.34𝑒–3t + 35.23𝑒–3.1t − 0.04𝑒–7.92 

 𝑆(𝑡) = 𝑝0(𝑡) + 𝑝FS(𝑡)  

+ ∑ 

0 0 −7.917 3.1668 0 0 0 0 4.7502
⎥
 

0 0 0 −2.639 2.639 0 0 0 
⎥ 

0⎥ 

0 0 0 0 −13.9666 4.4693 0 0 9.4973⎥ 
0 0 0 0 0 −3.1037 3.1037 0 0⎥ 
0 0 0 0 0 0 −13.9666 4.4693 9.4973⎥ 
0 0 0 0 0 0 0 0 0⎥ 
0 0 0 0 0 0 0 0 0⎦ 

 

−3 1.5 0 0 0 0 0 0 1.5 
⎡  0 −2 2 0 0 0 0 0 0⎤ 
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= 0.02 + 6.59𝑒–2t − 23.78𝑒–2.64 + 53.35𝑒–3t − 35.22𝑒–3.1t + 0.1𝑒–7.92t 

5. CONCLUSION 

In practice, the repeatedly repairs may lead the system life becomes shorter while the consecutive repair times become 

longer and the coverage to the FS become smaller. In this paper, a new model is built to estimate the system's safety and 

security with the repeatedly imperfect repairs influence when the system in Failed-Safe States. This model has some 

significant meaning for evaluating the system safety performance under the imperfect repair condition. 
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