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Abstract 
The field of medical informatics involves the study of integrating imaging and biomedical record data. Medical 
image data consists of pixels representing different parts of a physical object. Analyzing this data requires 
expertise in value analysis and disease diagnosis. Medical image classification is crucial for Computer-Aided 
Diagnosis (CAD) and improving healthcare services. It involves analyzing pixel data to categorize medical images 
and identify affected areas. This is challenging due to the high dimensionality and complex structures of medical 
images. Experts are needed to interpret image features and verify classification results. The key goal is to 
maximize categorization accuracy for precise disease diagnosis. In recent decades, Artificial Intelligence (AI) 
models, including Machine Learning (ML) and Deep Learning (DL) algorithms, have been developed for medical 
image classification. Traditional ML relies on hand-engineered features, while DL models automatically extract 
discriminative features at multiple levels of abstraction. However, challenges such as limited training data, class 
imbalance, and inter-class similarities hinder the learning of salient visual characteristics. This study provides a 
thorough examination of the most advanced DL models used for classifying medical images. Furthermore, it 
evaluates the advantages and constraints of various models on a range of medical image datasets. The review 
provides valuable insights on how to optimize medical picture categorization and offers guidance for future 
improvements in Computer-Aided Diagnosis (CAD) to improve precision healthcare.  

Keywords—Medical image classification, Computer-aided diagnosis, Artificial intelligence, Machine learning, 
Deep learning

 

I. INTRODUCTION 

Medical Informatics combines Information Technology (IT) and healthcare, integrating biomedical records and 
imaging data. Biomedical records contain patient medical test results while imaging data is formed by pixels 
representing physical objects [1]. Medical image analysis mainly aims to pinpoint the exact areas of the body 
impacted by disorders. Improving clinical treatment relies heavily on developing automatic diagnosis algorithms 
using image data [2]. Because medical picture categorization is still a difficulty, this study gives a comprehensive 
overview of the methods currently used to solve this problem. 

1.1 Basics of Medical Imaging 

Undetectable waves, such as electromagnetic radiation, sound waves, and magnetic fields, are essential in medical 
imaging [3]. Comprehending medical imaging studies requires a thorough understanding of the many sorts of 
waves. Typically, these waves originate from a source located on one side of the body, traverse through the body 
(including the specific area of interest), and ultimately reach a detector positioned on the opposite side. The waves 
are absorbed by the body's tissues to varied extents, and the detector generates an image that displays the 
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"shadows" of distinct biological tissues. Previous medical imaging techniques, like radiography, utilized 
photodetector plates that necessitated film processing prior to image visualization [4]. Nevertheless, contemporary 
medical imaging technology enables immediate image acquisition and presentation on digital monitors [5]. 

1.2 Applications of Medical Imaging 

Medical imaging is predominantly utilized for diagnostic purposes; however, it also has significant applications 
in other areas.: 

● Medical imaging is a rapid method to diagnose the cause of a patient's disease, including bone fractures, 
cysts, tumors, and anomalies [6]. 

● Monitoring disease progression: Imaging techniques like contrast-enhanced CT or MRI can help track 
the stage and progression of diseases, such as cancer or Parkinson's disease [7]. 

● Treatment planning: Medical imaging facilitates surgical planning by offering precise data regarding the 
dimensions and positioning of lesions [8]. 

● Evaluating treatment effectiveness: Imaging is used to assess the success of treatments, such as 
monitoring tumor size in cancer patients or ensuring proper alignment of bones and implants during 
surgery [9]. 

● Age determination: Ultrasonography and radiographs, can be used to determine fetal age, maternal 
gestational age, and patient age for legal purposes [10]. 

1.3 Medical Imaging Modalities 

Methods including mammography, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) 
provide medical pictures from biomedical instruments. Nuclear medicine, optical techniques, ionizing radiation, 
and magnetic resonance imaging are all part of this category of imaging modalities. The structure and organ tissue 
of the human body react differently to each modality. Among the most popular forms of medical imaging are: 

● X-rays: This is one of the most ancient and extensively employed methods for medical imaging. X-rays 
employ ionizing radiation to provide images of skeletal structures and certain types of pliable tissues 
[11]. They are often used to look at bones for fractures, dental issues, chest images, etc. 

● CT: CT use computer technology and X-rays to generate detailed cross-sectional images, sometimes 
known as "slices," of the human body.. It provides more detail than regular X-rays and can show both 
bone and soft tissues [12]. CT is used to diagnose tumors, internal organs, blood clots, fractures, etc. 

● MRI: MRI utilizes powerful magnetic fields as well as radio waves to produce intricate three-
dimensional anatomy pictures without the need of ionizing radiation [13]. It is good for soft tissue 
visualization and imaging of organs, muscles, ligaments, cartilage, etc. MRI can assess spinal cord 
injuries, brain abnormalities, torn ligaments, etc. 

● Ultrasound: Obtains images of the inside of the body by use of high-frequency sound waves. Breasts, 
abdomen, hearts, and pregnancies are common areas of examination. No ionizing radiation, portable, and 
non-invasive [14]. 

● PET (Positron Emission Tomography): The purpose of PET is to reveal biochemical and metabolic 
processes by means of radioactive tracers. By analyzing changes in tissue function, it can identify 
illnesses at an early stage [15]. It often combined with CT and used in cancer, heart disease, brain 
disorders, etc. 

● Mammography: It is a medical imaging technique that uses X-rays to provide detailed pictures of the 
breast's internal anatomy. It is an effective tool for detecting breast cancer in its early stages when the 
tumor is too small to be felt or detected by other methods [16]. 

1.4 Fundamentals of Medical Image Classification 

As depicted in Figure 6, there are multiple stages to medical picture classification [17]. Each stage is described in 
detail in this section. 
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Figure 1. Basic Steps in Medical Image Classification 

1.4.1 Image Acquisition 

The initial pivotal stage in medical image categorization involves obtaining raw imaging data, which encompasses 
primary information regarding the interior components of the body. Digital Radiography (DR) and CT detect 
different physical quantities, whereas PET detects different physical quantities, MRI detects different physical 
quantities, and ultrasonography detects different physical quantities based on acoustic echoes [18]. Acquiring data 
involves detecting and converting a physical amount into an electrical signal, preconditioning the signal, and 
digitizing, regardless of the modality. This process is represented in a general block diagram as shown in Figure 
2, which is applicable to most medical imaging modalities. 

 

Figure 2. General Block Diagram of Medical Image Acquisition Practice 

1.4.2 Pre-Processing 

In order to get medical images ready for analysis, particularly for classification tasks, pre-processing is essential 
[19]. Reducing image acquisition artifacts and ensuring picture consistency throughout a dataset are among the 
main objectives of medical image pre-processing. This involves techniques to enhance image quality, reduce 
noise, standardize features, and extract relevant information. Common pre-processing steps include: 

● Background Removal: Image segmentation is the process of isolating the main subject of interest from 
the surroundings in an image to enhance the effectiveness and precision of classification. An instance of 
this is skull stripping (see Figure 3), a method that removes the head and its environs from MRI brain 
scans [20]. A common step in this procedure is to use morphological procedures to create a mask of the 
Region of Interest(ROI). 
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Figure 3. Example of Background Removal 

● Denoising: Noise can have an impact on medical imaging modalities, leading to unpredictable variations 
in image intensity. In order to diminish noise, pictures might undergo filtering in both the spatial and 
frequency domains. Speckle is a type of multiplicative noise that can affect coherent imaging modalities 
such as ultrasound images. It occurs when the transmitted waveform and its echoes interfere with one 
another. Figure 3 shows how the speckle filter (specklefilt) function reduces speckle in a picture using a 
Speckle-Reducing Anisotropic Diffusion (SRAD) method [21]. 

 

Figure 3. Example of Denoising 

● Resampling: This technique is used to change the size of specific image pixels or voxels without 
changing their location in the patient's coordinate system (Refer to Figure 4). This aids in maintaining 
uniform image resolution throughout a collection that comprises images obtained from various scanners 
[22]. 

 

Figure 4. Example of Resampling 

● Registration: Aligning two- or three-dimensional medical images inside a dataset is known as image 
registration [23]. Its goal is to achieve consistent spatial alignment in images captured from many 
patients, or from the same patient obtained at different periods using multiple scanners or other imaging 
modalities (Refer to Figure 5). 
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Figure 5. Example of Image Registration 

● Intensity Normalization: The procedure uniformness the intensity value range for all images in a dataset 
[24]. There are usually two processes to accomplish this: first, reducing the intensity range to a more 
manageable size; and second, adjusting the intensity range to match the data type of the image, whether 
it's digital or binary. One way to make the images more consistent is to use the image's minimum and 
maximum values to rescale the intensity values. Another tactic is to make sure that all of the photographs 
use the same intensity range of values. The use of intensity windowing in CT scans achieves this by 
limiting the intensity values (in Hounsfield Units, or HU) to a range suitable for the tissue being studied. 
Using the HU range of -1400 to 2400 for bone segmentation and the -1200 to 600 range for lung 
segmentation from a chest CT are the two main approaches. Figure 6 shows a chest CT slice recorded 
with and without intensity windowing, as well as with and without a "lung" and "bone" intensity window, 
respectively. 

 

Figure 6. Example of Image Intensity Normalization 

1.4.3 Segmentation 

Medical image segmentation involves extracting ROIs from 3D medical image data, such as MRI or CT scans, to 
identify specific areas of the anatomy for various purposes [25]. Recent advancements in AI software have made 
this task more efficient, allowing for precise analysis of anatomical data by isolating necessary areas, removing 
unwanted details, and generating segmented masks for further analysis by clinicians [26]. However, segmenting 
medical images automatically is challenging due to their complex nature and various factors affecting the output 
of segmentation algorithms. Various techniques are used, tailored to specific imaging modalities, anatomical 
structures, and clinical goals. Some commonly used techniques include: 

● Thresholding: It is a simple technique that classifies pixels or voxels in an image as foreground or 
background based on a fixed intensity threshold [27]. It is particularly useful for segmenting images with 
clear intensity differences between ROIs and background, such as in binary or grayscale images (Refer 
to Figure 7). However, selecting the right threshold values can be challenging and can impact 
performance when artifacts are present. 
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Figure 7. Example of Thresholding-Based Medical Image Segmentation 

● Region Growing: It is a segmentation method that starts from seed points or regions and adds 
neighboring pixels with similar characteristics to the segmented region (See Figure 8). It is effective for 
segmenting homogeneous structures in medical images but can be sensitive to noise and intensity 
variations [28]. It includes region merging, region splitting, and split and merge methods. It has 
limitations such as under-segmentation and over-segmentation. 

 

Figure 8. Example of Region Growing-Based Medical Image Segmentation 

● Edge-Based: Edge detection is the process of identifying boundaries between different structures in an 
image based on changes in intensity or gradient (Refer to Figure 9). Techniques like the Canny edge 
detector can be combined with region-based approaches for better segmentation accuracy [29]. However, 
edge detection methods may be affected by noise and can produce fake or weak edges, which can impact 
segmentation results. Thus, it is often necessary to use edge detection in combination with region-based 
techniques for complete segmentation. 

 

Figure 9. Example of Edge-Based Medical Image Segmentation 

● Active-Contour (Snakes): Figure 10 depicts active contours, which are flexible systems that reduce an 
energy function using picture characteristics and limitations on contour smoothness. They are effective 
for segmenting structures with irregular boundaries, such as tumors or blood vessels, as they can adapt 
to complex object shapes [30]. 
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Figure 10. Example of Active Contour-Based Medical Image Segmentation 

● Atlas-Based: It involves registering a pre-segmented atlas or template image to a target image and 
transferring the corresponding segmentations (See Figure 11). It uses anatomical priors and spatial 
information to achieve accurate segmentation, especially in cases with significant inter-subject variability 
[31]. However, it may struggle with complex structures that have variable shapes, sizes, and properties, 
and building the database requires expert knowledge. 

 

Figure 11. Example of Atlas-Based Segmentation 

1.4.4 Feature Extraction 

It involves identifying and quantifying important information from images for classification. Common techniques 
and features used in medical image classification include: 

● Intensity-Based Features: 
1. Histogram-based features: Statistical measures derived from the intensity histogram of the 

image, including mean intensity, standard deviation, skewness, and kurtosis [32]. 
2. Gradient-based features: Measures of local intensity gradients or edges, including gradient 

magnitude, gradient orientation, and edge density [33]. 
● Shape-Based Features: 

1. Geometric features: Quantitative shape characteristics such as area, perimeter, compactness, 
eccentricity, and circularity [34]. 

2. Region-based features: Measures based on the spatial distribution of pixels within segmented 
regions, including centroid coordinates, moments, and Euler numbers [35]. 

3. Skeletonization features: Features extracted from the skeleton or medial axis representation of 
segmented objects, including branch points, endpoints, and branch lengths [36]. 

● Texture-Based Features: 
1. Texture features: Statistical measures describing spatial variations in intensity, such as Gray-

Level Co-Occurrence Matrix (GLCM) features, Gray-Level Run Length Matrix (GLRLM) 
features, and Gray-Level Size Zone Matrix (GLSZM) features [37]. 

2. Filter-based texture analysis: Computing texture features using filter banks or convolutional 
kernels, such as Gabor filters, wavelet transforms, or Local Binary Patterns (LBP) [38]. 

● Frequency Domain Features: 
1. Fourier transform features: Extracting frequency-domain information from images using 

Fourier or Discrete Cosine Transform (DCT), including frequency components, power spectra, 
and spectral entropy [39]. 
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2. Wavelet transform features: Decomposing images into different frequency bands using wavelet 
transforms and computing features from wavelet coefficients, such as energy, entropy, and 
skewness [40]. 

● Local Descriptors [41]: 
1. SIFT (Scale-Invariant Feature Transform) is used for detecting and describing local features 

that are invariant to scale, rotation, and illumination changes, making it useful for matching and 
registration tasks.  

2. SURF (Speeded-Up Robust Features) is similar to SIFT but computationally faster, making it 
suitable for real-time applications in medical imaging.  

3. ORB (Oriented FAST and Rotated BRIEF) is a combination of FAST keypoint detection and 
BRIEF descriptor, offering robustness and efficiency for feature extraction. 

● Deep Learning-Based Features: 
1. Feature Extraction from Pre-trained CNNs: Feature extraction from VGG, ResNet, or Inception, 

or other pre-trained CNNs, through the use of global pooling or intermediary layers [42]. 
2. Autoencoder-based Features: Generating compact representations of image data using 

autoencoders or Variational Auto-Encoders (VAEs) and utilizing the learned features for 
downstream tasks [43]. 

1.4.5 Classification 

The process of automatically classifying medical photographs into predetermined groups according to their visual 
content is known as medical image classification. This is important for disease diagnosis, prognosis, treatment 
planning, and patient management. Traditional classification methods include [44]: 

● Support Vector Machines (SVM): This supervised ML model excels in two-group classification issues 
and regression analysis in general. To categorize input data, SVMs use decision functions; they are 
nonparametric classifiers. 

● K-Nearest Neighbors (K-NN): Data regression and categorization using the number of k-neighbors are 
two of its primary uses. 

● Naive Bayes: It applies Bayes’ hypothesis with strong independent assumptions and is used for medical 
image classification. 

● Decision Trees: It is a decision support tool that works with discrete-valued parameters and aims to create 
a small decision tree. DT Ensembles, such as Bagging (Random Forest (RF)) and Boosting (Gradient 
Boosting DT (GBDT) and Extreme Gradient Boosting (XGBoost)), are also used for ensemble 
classification. 

DL is a type of ML that allows computers to understand the world through a hierarchy of ideas. This allows for 
complex ideas to be learned by building them from simpler ones. Neural Networks (NNs) based on the human 
brain and neurons are used as classifiers in classifying medical images. Some common DL techniques include 
[45]: 

● Deep Neural Network (DNN): A multi-layer Artificial NN (ANN) connects the input and output nodes. 
It is trainable in the same way as other ML algorithms and has neurons, synapses, weights, biases, and 
functions. 

● CNN: It assigns significance to different aspects/objects in an input image and can distinguish between 
them with minimal pre-processing. 

This review examines the application of DL models in classifying medical images. It surveys recent studies using 
DL for medical image classification, highlighting benefits and limitations. It also aims to identify research gaps 
and suggest future directions to improve classification accuracy across various medical imaging modalities. 
Section II reviews DL-based medical image classification models, while Section III summarizes the analyses and 
suggests potential improvements in this field. 

II. SURVEY ON DEEP LEARNING-BASED MEDICAL IMAGE CLASSIFICATION 

The advent of DL techniques has sparked interest in medical image categorization. These models have shown 
promise in accurately classifying medical images. This section reviews recent research on advanced techniques 
for medical image classification. Huang et al. [46] created a Hybrid Network (HybridNet) by combining a 
modified Principal Component Analysis Network (PCANet) with a simplified DenseNet. The modified PCANet 
has two stages that produce feature maps by convoluting inputs with learned kernels. The simplified DenseNet 
uses the feature maps from the PCANet as inputs and employs dense shortcut connections for accurate medical 
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image classification. In order to identify medical images, Ashraf et al. [47] presented a new way of image 
representation that makes use of a DL algorithm. On the DNN's final three layers, they adjusted a pre-trained deep 
CNN. 

Fuzzy Discriminative Sparse Representation (FDSR) is a novel approach to medical picture classification that 
was proposed by Ghasemi et al. [48]. To improve both the similarities and differences between intra-class 
representations and between classes, this strategy uses fuzzy words. Dictionary atoms were also learned using a 
flexible fuzzy dictionary learning method. Diagonal Bilinear Interpolated Deep Residual Network (DBI-DRSN) 
was developed by Assad and Kiczales [49] and is a novel approach to feature extraction and biological image 
classification. The DRSN uses the extracted features for picture classification, while the DBI uses an interpolation 
function to improve information and content features. 

The Adversarial Lesion Enhancement Neural Network (ALENN) model was created for medical picture 
categorization by Zhang & Hu [50]. A structure-based adversarial inpainting mechanism and a lesion data-fusion 
based classification module made up the two stages of the framework. The initial step was to locate the area of 
interest in the photos that represented the lesion; the subsequent step was to merge that area and classify the results 
using the improved data. 

A network model for the detection of colonic polyps in colonoscopy images was developed by Wang et al. [51]. 
In an effort to overcome the difficulty of colonic polyps' delicate surface texture, they developed a Channel 
Information Interaction Perception (CIIP) module. The IIP-Net, or Information Interaction Perception Network, 
was built on top of this module. Using three different classifier structures—Fully Connected (FC), Global Average 
Pooling FC (GAP-FC), and Convolution GAP (C-GAP)—the network was able to improve classification accuracy 
while decreasing computational cost. Using Deep Tree Training (DTT), Yang et al. [52] presented a CNN branch 
selection algorithm with two stages. To solve the problem of disappearing gradients and reduce computing load, 
DTT hierarchically trains a succession of networks built from CNN's hidden layers. An ideal classifier was then 
constructed by merging the CNN branches according to diversity and accuracy standards. 

In order to facilitate finer granularity reasoning and enhance information extraction from medical images, An et 
al. [53] presented a Multiscale Convolutional Neural Network (MCNN) model with a visual attention mechanism. 
Machine convolutional neural networks (MCNNs) enhance training strategies and medical image classification 
tasks by automatically extracting high-level discriminative appearance elements from the source image and using 
a Mahalanobis distance optimization model for the loss function. In order to classify medical images using 
Ensemble Learning (EL), Abd Elaziz et al. [54] created an IoMT model that is 6G enabled. To enhance 
classification accuracy and precision, the model employs a blend of MobileNet and DenseNet architecture for 
feature extraction, and a Honey Badger Algorithm (HBA) based on Levy Flight (LFHBA) for feature selection. 

An AI-based Fusion Model (AIFM) was presented for biological picture classification by Mansour et al. [55]. As 
a preliminary step in the processing, it employs Gaussian filtering to eliminate noise and improve contrast. The 
feature extraction approach is fusion-based, meaning it uses both deep features from Inceptionv4 and SIFT-based 
handmade features. To further improve the classification performance of a deep Support Vector Machine (SVM), 
a whale optimization was employed. 

A highly sparse descendent network strategy was created by Zhu et al. [56] using an evolutionary synthesis 
scheme, which is an evolution-based collective learning approach. In inference, these networks can serve as 
foundational networks for ensemble learning. Using this approach as a foundation, the Medical Image 
Classification using Ensemble Bio-inspired Evolutionary DenseNets (MEEDNets) model was created. 
MEEDNets is composed of several evolutionary DenseNet-121s generated by evolution. 

A novel model for medical image classification using several areas was created by Ashwath et al. [57] and is 
called TS-CNN. The goal of developing this model was to make it easier to understand and use for classification 
tasks. Medical photos featuring dispersed and irregularly shaped lesions worked especially well with it. There are 
three parts to this model: one that learns patterns from the input image on a global scale, one that focuses on 
specific regions and ignores the rest so that the local branch can learn, and a third that makes use of information 
obtained from the global and local divides to classify the input image. 

In order to create a convolutional neural network (CNN) model for medical image classification, Ghosh et al. [58] 
created a Two-Phase Evolutionary model known as TPEvo-CNN. First, the best CNN architecture number of 
layers was found using Differential Evolution (DE). During the second stage, the Genetic Algorithm (GA) adjusts 
the hyperparameters of the constructed CNN layer. The hyper-parameter search space was explored using GA's 
crossover and mutation processes, and a candidate hyper-parameter for the next generation was chosen using an 
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elitism selection technique. 

The CTransCNN hybrid DL model was created by Wu et al. [59]. It combines Transformer and CNN and consists 
of three primary modules: MMAEF, MBR, and IIM. A multi-label multi-head attention enhanced feature module 
and a multi-branch residual module round out the model. For medical image classification using multiple labels, 
MMAEF investigates implicit label correlations, MBR optimizes the model, and IIM improves feature 
transmission and increases branch-to-branch nonlinearity. 

The ICNN-Ensemble, created by Musaev et al. [60], is an enhanced CNN ensemble that uses RHRIC and SMDE, 
or an organized model dropout ensemble. It use the original RGB images in conjunction with RHRIC-processed 
image channels to obtain a deeper understanding of image channels and access additional residual feature 
connections. In the ICNN-Ensemble model, SMDE chooses ensemble members according to changes in the 
Accurate Prediction Field (APF). The model can be taught with larger batches of images by performing 
ensembling during the test set prediction, which makes the most efficient use of the GPU. 

Table 1 summarizes the advantages, disadvantages, and performance of the medical image classification models 
discussed above. 

Table 1. Comparative Study of DL-Based Medical Image Classification Models 

Ref. 
No. 

Models Merits Demerits Dataset Performance 

[46] HybridNet The model had 
fewer 

parameters, 
resulting in 

lower 
computational 

cost and 
preventing 
overfitting. 

The accuracy 
was not 

satisfactory. 

Digital Database 
for Screening 

Mammography 
(DDSM), 

osteosarcoma 
histology images, 

and the 
Mammographic 
Image Analysis 
Society (MIAS) 

dataset 

DDSM Dataset: 
Sensitivity=0.862; 
Specificity=0.787; 

Accuracy=0.83; 
Area Under Curve 

(AUC)=0.897 
Osteosarcoma 

Histology Image 
Dataset: 

Sensitivity=0.872; 
Specificity=0.936; 
Accuracy=0.872; 

AUC=0.965 
MIAS Dataset: 

Sensitivity=0.867; 
Specificity=0.933; 
Accuracy=0.867; 

AUC=0.938 
[47] Deep CNN It achieved the 

highest 
accuracy in 
classifying 

medical 
images. 

The execution 
time and 

computational 
cost were high 
for large-scale 

datasets. 

Multiple open-
access datasets of 

medical images for 
various human 

body organs 

Accuracy=97.73%; 
Execution 

time=682min 10s 

[48] FDSR It achieved 
maximum 

classification 
accuracy by 

capturing 
representative 

and 
discriminative 
patterns of all 

classes. 

The usage of 
fuzzy 

discriminative 
terms and fuzzy 

learning with 
dictionary atoms 
contributed to the 

high 
computational 
complexity. 

Repository of 
Molecular Brain 
Neoplasia Data 

(REMBRANDT), 
The Cancer 

Genome Atlas 
Low Grade 

Glioma (TCGA-
LGG), and MIAS 

dataset 

REMBRANDT: 
Accuracy=99.383%; 
Sensitivity=98.144%; 
Specificity=99.629% 

TCGA-LGG: 
Accuracy=98.599%; 
Sensitivity=95.82%; 
Specificity=99.162% 

MIAS: 
Accuracy=99.176%; 
Sensitivity=97.826%; 

Specificity=99.5% 
[49] DBI-DRSN Efficient and 

reliable. 
Accuracy was 

not efficient for 
large-scale 

Kaggle dataset 
containing Optical 

Coherence 

Accuracy=90.45% 
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medical image 
datasets. 

Tomography 
(OCT) images 

[50] ALENN It improved 
lesion 

positioning 
efficiency with 
coarse-grained 

labels. 

Time complexity 
of the sliding 
window was 

relatively high. 

MURA dataset 
containing a 

musculoskeletal 
X-ray dataset 

Accuracy=85.59%; 
Precision=81.11%; 

Sensitivity=93.19%; 
F1 score=86.73% 

[51] IIP-Net-
GAP-FC 

It achieved the 
highest level 
of accuracy 

and 
specificity. 

Collecting and 
pre-processing 

the colonoscopy 
image dataset 

was challenging. 

Colonic polyp 
image dataset 

Accuracy=99.59%; 
Precision=99.4%; 

Sensitivity=99.4%; 
Specificity=99.7%; 

F1 score=99.4% 
[52] DTT using 

GoogLeNet 
It achieved 

high 
specificity and 

feasibility. 

Complex model 
with excessive 

hyperparameters 
and inappropriate 

settings can 
result in poor 
performance. 

Breast 
Histopathology 
Images (BHI) 

dataset and Chest 
X-ray dataset 

BHI Dataset: 
Accuracy=88.8%; 

Sensitivity=88.56%; 
Specificity=93.16%; 

F1 score=86.33% 
Chest X-ray Dataset: 

Accuracy=86.7%; 
Sensitivity=89.34%; 
Specificity=95.3%; 
F1 score=91.26% 

[53] MCNN It was highly 
stable and 

achieved the 
highest 

accuracy. 

Overfitting can 
degrade the 

classification 
efficiency. 

Lung nodule 
dataset created by 
Japanese Society 

of Radiology 
Technology 
(JSRT) and 
Wisconsin 

Breast Cancer 
Database (WBCD) 

Lung nodule dataset: 
Accuracy=99.86% 
WBCD Dataset: 

Accuracy=99.89% 

[54] EL-LFHBA It achieved 
better 

performance. 

It was highly 
complex in terms 
of both time and 

memory. 

Chest X-ray and 
OCT datasets from 

Kaggle 

Chest X-ray Dataset: 
Accuracy=87.1%; 
F1 score=86.19%; 
Sensitivity=87.1%; 
Precision=88.56% 

OCT Dataset: 
Accuracy=94.32%; 
F1 score=94.3%; 

Sensitivity=94.32%; 
Precision=94.93% 

[55] AIFM It realized 
better accuracy 

and 
specificity. 

It cannot handle 
overfitting 
problem. 

Dataset from the 
Warwick-QU 

study on colorectal 
glands 

Sensitivity=93.58%; 
Specificity=96.98%; 
Accuracy=96.18%; 

 
[56] MEEDNet It achieved the 

highest 
accuracy. 

It was entirely 
focused on 

narrowing the 
network's width, 

ignoring its 
depth. 

Brain tumor MRI 
dataset with 

SARS-CoV-2 CT 
scan dataset 

SARS-CoV-2 CT 
Scan Dataset: 

Accuracy=99.31%; 
Precision=99.31%; 

Sensitivity=99.32%; 
F1 score=99.31% 

Brain Tumor 
Dataset: 

Accuracy=98.89%; 
Precision=98.63%; 

Sensitivity=98.91%; 
F1 score=98.76% 

[57] TS-CNN It was more 
flexible and 

The accuracy 
was heavily 

Custom blob 
dataset and open-

Custom Blob 
Dataset: 
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easier to 
understand. 

dependent on the 
global branch 

and vulnerable to 
noise, resulting 

in degraded 
performance as 

noise levels 
increased. This 

indicates an 
inability to 

handle noisy 
input images. 

access skin lesion 
PAD-UFES-20 

dataset 

Accuracy=99%; 
Precision=99.1%; 
Sensitivity=99%; 
F1 score=98.99%; 

AUC=99.99% 
PAD-UFES-20 

Dataset: 
Accuracy=72.6%; 
Precision=71.7%; 

Sensitivity=72.6%; 
F1 score=71.5%; 

AUC=90.12% 
[58] TPEvo-

CNN 
It was highly 
efficient for 
large-scale 

medical image 
datasets. 

The accuracy 
was not high for 

small-scale 
datasets. 

Colon cancer, 
radiology, 

COVID-19, and 
pneumonia 
databases 

COVID-19x1: 
Accuracy=98.2%; 
Precision=98.5%; 
Sensitivity=98%; 

F1 score=98% 
COVID-19x2: 

Accuracy=97.3%; 
Precision=96%; 

Sensitivity=95.3%; 
F1 score=95.6% 
COVID-19-CT: 

Accuracy=95.4%; 
Precision=95.5%; 

Sensitivity=95.5%; 
F1 score=95% 
COVID-19-

Radiography: 
Accuracy=97%; 

Precision=94.8%; 
Sensitivity=95.3%; 

F1 score=94.7% 
Pneumonia Dataset: 

Accuracy=79.4% 
Skin Cancer Dataset: 

Accuracy=83.4% 
[59] CTransCNN It has a strong 

ability to 
generalize for 
medical image 
classification. 

Its ability to 
handle 

dependencies 
was inefficient 

and accuracy was 
low because of 
inappropriate 

hyperparameter 
settings. 

Chest X-ray11, 
NIH Chest X-

ray14, and custom-
made Traditional 
Chinese Medicine 
Tongue Dataset 

(TCMTD) 

Chest X-ray11: 
AUC=83.37% 

NIH Chest X-ray14: 
AUC=78.47% 

TCMTD: 
AUC=86.56% 

[60] ICNN-
Ensemble 

It achieved 
maximum 

accuracy with 
minimal 

complexity in 
classifying 

medical 
images. 

Its 
generalizability 

was limited. 

Malaria cell 
images dataset 

Accuracy=99.67%; 
Precision=0.966; 
Sensitivity=0.9; 
F1 score=0.966 
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Figure 12. Comparison of Accuracy Values Achieved by Different DL Models on Various Medical Image 
Datasets 

Figure 12 shows a comparison of the accuracy of various DL models on datasets of medical images. Every model's 
accuracy in image classification is displayed here. The MCNN [53] had the highest accuracy, but it suffered from 
overfitting. To address this, the ICNN-Ensemble [60] was developed, achieving the highest accuracy on the 
Malaria cell images dataset by reducing overfitting and prediction errors.  

 

Figure 13. Comparison of Sensitivity Values Achieved by Different DL Models on Various Medical Image 
Datasets 

A variety of medical picture datasets are used to test the susceptibility of various DL models (Figure 13). It 
measures a model's ability to correctly identify diseased cases in the dataset. The IIP-Net-GAP-FC [51] achieved 
the highest sensitivity on the Colonic Polyp image dataset dataset, while the ICNN-Ensemble [60] achieved 90% 
sensitivity on the Malaria cell images dataset. 
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(a)       (b) 

  
(c)       (d) 

Figure 14. Comparison of (a) Specificity, (b) AUC, (c) Precision, and (d) F1 score Values Achieved by 
Different DL Models on Various Medical Image Datasets 

The metrics for DL model performance on several medical imaging datasets are compared in Figure 14. It includes 
specificity, AUC, precision, and F1 score values, which measure the models' ability to identify negative cases, 
overall performance in distinguishing between positive and negative cases, avoidance of false positives, and a 
balanced evaluation of precision and sensitivity, respectively.  

In Figure 14(a), models like FDSR, MEEDNet, and AIFM achieved high specificity values above 96%, indicating 
excellent performance in correctly identifying negative cases (e.g., healthy cases). The specificity value for ICNN-
Ensemble is not explicitly provided. In Figure 14(b), the AUC values indicate that models like MCNN and 
HybridNet achieved AUC values above 0.9, indicating very good performance. However, the AUC value for 
ICNN-Ensemble is not explicitly provided. 

Figure 14(c) shows that the IIP-Net-GAP-FC [51] achieved the maximum precision on the Colonic Polyp image 
dataset, while the ICNN-Ensemble model achieved a precision of 96.6% on the Malaria cell images dataset, 
indicating its ability to avoid false positives. In Figure 14(d), the IIP-Net-GAP-FC [51] achieved the maximum 
F1 score on the Colonic Polyp image dataset, while the ICNN-Ensemble model achieved an F1 score of 96.6% 
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on the Malaria cell images dataset, indicating a well-balanced performance in terms of both precision and 
sensitivity. 

The findings highlight the need to keep in mind that various datasets and visual modalities may yield varying 
model performances. As far as medical picture classification goes, the ICNN-Ensemble model is head and 
shoulders above the competition, especially on the malaria cell images dataset. It achieved the highest accuracy, 
sensitivity, precision, and F1 score by utilizing the most effective ensemble combination to prevent the loss of 
APF. This model demonstrates exceptional capability in accurately classifying images in this dataset. 

III. CONCLUSION 

In this exhaustive work, we have examined the most recent DL methods for medical image classification. 
Automatic feature extraction from raw image data has demonstrated encouraging results using DL models, 
including CNNs. Among the various studies reviewed, the ICNN-Ensemble model demonstrated the highest 
performance in classifying medical images by leveraging ensemble learning to reduce prediction errors. However, 
while there have been performance improvements, there are trade-offs between accuracy, model complexity, 
generalizability, and computational cost. Since other datasets were not taken into account during the model's 
evaluation, issues with generalization and the complexity of the model's size still need to be resolved. Therefore, 
future research should focus on developing robust DL models capable of reliably classifying diverse medical 
images across different imaging modalities. It will be crucial to integrate domain knowledge, address data 
irregularities, and improve interpretability to facilitate the clinical adoption of AI-powered medical image 
classification systems. 
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