
Library Progress International
Vol.44 No.3, Jul-Dec 2024: P. 22506--22518

Print version ISSN 0970 1052
 Online version ISSN 2320 317X

Original Article Available online at www.bpasjournals.com

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224506

Cloud Data Security Through Proficient Message Secure Encryption

1Andal.V, 2Prof. D.Ganesh

1Research Scholar School of CS & IT Jain [Deemed-to-be] University Bengaluru.
Technology, Ramapuram
2 School of CS & IT Jain [Deemed-to-be] University Bengaluru.
Ramapuram

How to cite this article: Andal.V, D.Ganesh (2024). Cloud Data Security Through Proficient Message Secure
Encryption. Library Progress International, 44(3), 22506--22518

Abstract

In the process of providing more storage space and increase bandwidth a method called data deduplication, is used
for removing redundant copies of data due to which more cloud service providers are able to satisfy more number
of customers as it helps providing room for more unique information. Even though the same type of file is used
by huge number of users, for all similar files only one copy of every similar file is stored in the cloud datastore.
Deduplication systems enrich usage of storage utilization as well as reduces dependability due to this result. In
this publication, an unique reliable distributed system for deduplication is formalized for the first time. This
research paper introduces an enhanced deduplication strategy, depicted by intensified dependability. This
improved deduplication structure comprises two distinct support systems which are the passive support system
and the active support system. As part of this system, rather than the entire file set deduplication testing occurs at
the stage of individual smaller file units. The proposed methodology sees to that a strong and confidential security
by retrieving secure tags which are unique for each small file unit, later they are stored in a deduplication branching
tree to separate new and existing data blocks. The core and main merits of the proposed approach is its ability to
generate secure and unique tags from smaller message segments. As a result, this method simplifies the process
during customer communications and minimizes the difficulty associated with deduplication testing across the
entire data storage. This proficiency advancement is pertinent to all the data stored in the cloud data storage.

Keywords: Deduplication; Proficient Message encryption; Branching tree, Passive and Active Support System.

1. Introduction

 Cloud Computing has emerged and evolved as a sound technology in this dominant digital period, by giving
room for a resizable, elastic and safe atmosphere for computing, saving, and online communication resources.[1]
This Cloud mindset has transformed the business operating structure of many organizations, enabling them to
cutdown expenses, intensify throughput efficiency and enhance results, as well as facilitating online work and
automated transformation .[2] With the discovery of edge computing, cloud computing is transforming rapidly to
support downtime-reduction applications, facilitating variety of customer-problems in industries like health-
sector, education, banking-sector, business and transportation.[3] Moreover breakthrough in other fields like
artificial intelligence(AI), machine learning(ML) and the (IoT)Internet of Things are deepening in huge amount
the revolution of Cloud computing, enabling inventive facilities and software.[4]

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224507

 Data Deduplication in cloud computing is an innovative downsizing memory utilization technique by
eliminating repeated blocks of files, minimizing data storage expenses and still exchange data remotely in an
efficient manner.[5] Data deduplication techniques based on cloud facilitates cloud consumers to efficiently
handle large datasets in a resizable and an economical way, as well as confirming to data stability and
authenticity.[6] There are variety of deduplication techniques in industry being used based on hashing, content-
wise and similarity-wise. They are employed in cloud storage systems to identify and remove similar data
blocks.[7] Moreover data deduplication solutions based on cloud often collaborate with more cloud services, like
cloud backup service and disaster recovery service, to provide complete and thorough data management
services.[8]

 Data deduplication based on cloud, is a service in which data is trivially divided into either static-length or

variable-length blocks, and later by using hashing or fingerprint technique each block is assigned a new hash-
value-id or fingerprint.[9] These hash-value-id are then used to find out similar blocks which are then substituted
with references to the actual block, by doing this storage space requirements is reduced and provides room for
more consumers to use the storage space efficiently. Some cloud service providers also utilize latest deduplication
techniques such as delta encoding and compression, to further reduce data redundancy and improve storage
efficiency.[10]

Data deduplication uses variety of methods to find out and remove identical or similar data in the database.

Data deduplication can be done while the client is trying to upload the data to the server or while we maintain a
backup dopy of the uploaded data and maintain only one copy of similar data.

2. Related Work

Research on record deduplication has presented a wide range of solutions encompassing File-level and Block-
level data deduplication. This literature review shows the insights in the recent findings and methodologies and
projects on the advancements and challenges associated with these two approaches. File-level deduplication
often viewed as an initial approach works by identifying duplicate files within a dataset. This technique involves
scanning files and eliminating repetitions based on the data names, sizes and hashes.

According to Zhang et al. (2023) [11], file-level deduplication is beneficial as it is simple and fast in systems

with huge number of large and files which are not updated frequently. The problem here is that it does not have
an efficient way to handle fragmented or updated files. Zhang et al. proposes an innovative approach where meta-

Figure 1: DATA DEDUPLICATION PROCESS

data is utilized to verify the authentication process thus reducing the cost associated with complete scan files.

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224508

The study of Mirza et al. (2023) [12] in contrast emphasizes the limitations of the file-level deduplication where

the data files are modified frequently. The argument here is that file-level deduplication can efficiently reduce
storage space for static data, while it is not that effective for dynamic datasets. As a solution they suggest
integrating file-level deduplication with advanced algorithms that adapt to changes in the file structure, thereby
enhancing the overall capability of the deduplication process.

Block-level deduplication provides a more better approach by splitting files into blocks, wherein duplicate

blocks are identified and removed. This process helps for better data verification in data management especially
when files are modified or frequently updated. In a recent study by Chen et al,(2023)[13] they show a sample of
a hybrid deduplication technique that combines both block-level deduplication and machine learning algorithms
which helps in foreseeing data patterns. This approach significantly increases data deduplication rates and reduces
storage requirements in cloud storage spaces particularly for backup storage.

Another research by Kumar and Singh(2023)[14] studies and goes into the performance metrics of block-level

deduplication in enterprise storage systems. Here they have used a new methodology to prove that variable-length
chunking is better than fixed-length chunking which leads to better deduplication ratios and it also minimizes the
data fragmentation. Future research scope is that researchers can focus on hybrid models that leverage the
strengths of both approaches to develop even more efficient deduplication techniques.

3. Improved P-MSE Deduplication Approach

The Proficient Message Secure Encryption (P-MSE) methodology proposes two safe and reliable deduplication
methods based on the passive and active deduplication branching trees, respectively. The passive one is obviously
more effective because it does parity checking computations in a very cost-effective manner. The active one
permits server-side data to be added, deleted or updated and is done effectively using the deduplication decision
branching tree operations. The active system also reduces the communication rate between servers and clients.

The proposed approach is dealt in four modules. They are
3.1 Set the initial values of the Deduplication branching Tree.
3.2 Raid for duplication
3.3 Tag Generation
3.4 Storage of files in decision branching tree.

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224509

1. Fig. 2. Deduplication Approach

3.1 Set the initial values of the deduplication decision branching tree

In set the initial values module the decision branching tree is initialized with null node. When an authorized owner
arrives to upload data, their data are stored in a branching tree as left or right child based on their tag generated.
In the process to select the branch to proceed till reaching a leaf node, the nodes of a tree are the ones which
represent branching rules, are used. The operations that are supported by the branching tree are Decision, Adding,
and Deleting. The process that is done in the Decision operation is that the branching tee is searched for a certain
data element. A fresh element is added placed in the new tree node position during the process of addition
operation. Adding a fresh sheet node that can be referred to as a node in the beforehand is very clear. When trying
to add the intermediate node, we must consider the node with the existing sheet node entered as the root node.
During the Deletion operation we erase the duplicate branch of the tree element. As with operations, the delete
operation must consider the existing relations between the node, if the node itself is being deleted, not the sheet
node.
Algorithm 1: Duplication Identification Over Passove Deduplication branchingTree

1. User U logs into the cloud service provider to upload new data 𝑐∗.
2. U verifies the tag of the current live node of Passive Deduplication Tree T to the cloud server provider to

raid for duplication.

3. Cloud Server responds by giving the unique tag of the current node t of T, 𝑇௧ , 𝑇௧.௡(௖೔)

4. U calculates the key to determine the deduplication 𝑇௧೔.௡(௖∗), and check and raid if any duplication
occurs

5. This Deduplication verifying process is continued on all the lines of 𝑐.
6. In the duplication raid process if duplication found U send "Similarity identified" message to cloud

server.
7. If no duplication found U computes the place in the branching tree by comparing with the current node

np= P൫𝑇௧೔.௡(௖)൯ 𝜖 {0,1}

8. U transfers np to cloud server
9. Cloud server shifts the new node to be added pointer to the current branching tree node of the T
10. If the calculated np=0 cloud server moves the pointer to left side branching tree of the live current node

and store 𝑇௧೔௡(௖∗)
11. If the calculated np=1cloud server moves the pointer to right side branching tree of the live current node

and store 𝑇௧೔.୬(௖∗)
12. Continue from step 1 and repeat all the remaining steps until when the cloud server gets “Similarity

identified” return message or goes to the last node of T

Algorithm 2: : Duplication Identification Over Active Deduplication branchingTree

1. User U logs into the cloud service provider to upload new data 𝑐∗.

2. U calculates the deduplication unique tag 𝑇௧∗ , 𝑇௧.୬(௖∗) and 𝑛𝑝௜ returned to cloud server
3. Cloud server checks for deduplication in the tree by using the unique tag in the active deduplication

branching tree 𝑇௧∗.୬(௖∗), and raid to check if any similar key is available to check for similarity
occurrence

4. This Deduplication identification process is repeated by the cloud server on all the lines of c.
5. During the deduplication process if any similarity detected cloud server returns 1 to U.
6. If in the deduplication process no similarity detected the cloud server sends 0 to U

7. When U receives 0 from the cloud server, U calculated a fingerprint or hash key F and np= P൫𝑇௧೔.୬(௖∗)൯

8. U returns n𝑝௜ + 1 to cloud server
9. Client server changes the new node adding pointer over T based on 𝑛𝑝௜ + 1
10. If 𝑛𝑝௜ + 1 =0 cloud server shifts the pointer to left side of the current branching tree node and store

𝑇௧೔.௡(௖∗)

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224510

11. If 𝑛𝑝௜ + 1 =1 the cloud server shifts the pointer to right side of the current branching tree node and store

𝑇௧೔.୬(௖∗)
12. Then goto step1 and continue the process for every new file that enters the cloud server.

3.2 Deduplication Raid
The proposed Deduplication Raid approach the owner’s file undergoes a thorough raid so that before storing it
could identify whether similar file exists in the data storage or not. To achieve this approach the proposed method
does by generating fingerprint based on an operation like comparing strings. Different companies may build their
own Deduplication raid rules and policies for commercial and personalized institution using duplicate raid. These
guidelines can be used with various Microsoft Dynamics 365 record types. Suppose for example, if two consumers
share the same identities, a company may assume them as both are representing the same person. In such cases
when a new consumer tries to upload new file or modify existing data, using the rules to raid and identify it identifies
duplicates and notifies the system about the similarities found on the basis of the duplication raid rules mentioned
by the system admin of the organization. Now at this stage we can create steps and ideas for the duplication raiding
which helps to search for duplicate records for all records that meet a given set of criteria, maintaining data quality.
We plan here how to remove, deactivate or join the similarities identified by using the steps identified to clean the
data which has similarities. Make a duplication identifying rule for a for every unit type in order to find duplicates
in the system. The duplicate raid unit represents a duplicate identifying rule. For similar entity type, this method
can generate many identifying rules. For every unit category, this work can only express a total of five duplication
identifying conditions at a time. By checking for similarity, the resultant identical tags of the stored records with
the newly arriving record that is created, duplicate identification operates. Whenever a new record is given by the
code, a similar identical tag is given as a result. So that, if they are detected for similarity at the same instance, there
is a probability that one or more duplicate records will be uploaded. This work should set up time to detect similarity
detection applications to search for additional potential similar data files in addition to detecting duplicates as they
are uploaded.

3.3 Tag generation
The Tag generation algorithm is based on duplicate raiding. When the original data content contains any similarity
with the existing data then this algorithm generates a tag and given to the customer if no similarity found new tag
is produced and stored to be given to other users who have stored data of the same type. The tag production is
provided, by using a hash generation encryption function. In this work multiple indirect 3-level hash algorithm is
used. This hash encryption function contains the following steps,

1. Plan and identify Block measure: identify the measure of data blocks, 1-level pointer blocks, 2-level
pointer blocks, and 3-level pointer blocks. These measures will play a vital role on the amount of nodes
and actual data item any individual block can accommodate.

2. Data Structure Initialisation: Plan and prepare the required data structures to hold the hash table, data
blocks, and address pointers. Data structures can be of any valid type most preferable one is linked list.

3. Straight forward Level:

 Using the algorithm and method identified create a hash table directly to store the hash keys at the
straight forward level. This hash table maps or links a hash value of the key to a address pointer
pointing to a 1-level pointer block.

 Every key entry in the hash table represents a hash value which is not similar to any other hash value
produced and connects or directs to the respective 1-level pointer block.

4. 1-level Pointer:

 Design and create 1-level pointer blocks to store addresses which points to another data blocks or 2-
level pointer blocks.

 Every data entry in the straight forward hash table corresponds to a 1-level pointer block.

 Each 1-level pointer block contains addresses that points to data blocks or 2-level pointer blocks,
depending on the design.

5. 2-level pointer:

 Design and create a 2-level pointer indirect blocks to store address that points to 1-level pointer blocks.

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224511

 Every data entry in the 1-level pointer block in the 1-level pointer level corresponds to a 2-level pointer
block.

 Every 2-level pointer block contains addresses that points to 1-level pointer blocks.

6. 3-level pointer:

 Design and create 3-level pointer blocks to store addresses that points to 2-level pointer blocks.

 Every data entry in the 2-level pointer block in the 2-level pointer level corresponds to a 2-level pointer
block.

 Each 3-level pointer block contains addresses that points to 2-level pointer blocks.
7. Storage: Inside the data blocks the actual data is stored.. The new data blocks created and stored can

later be used through pointers from the 1-level pointer, 2-level pointer, and 3-level pointer blocks. They
are stored using the formula: P = (b * P) + d % X, where X = 264 or X=232. In this way it makes way
for this hash function to have certain features: Since a1-1 is 32, which can be divided by 2, the only prime
factor of 232, every prime factors of X is also possible to divide it. If X is a multiple of 4, then a-1 also
is doing the same way. On top of it, d and M should be similar to prime. The more the levels the more
secure the data security is. To improve the security the proposed method uses multiple level indirect
blocks and has demonstrated upto 3-levels.

Algorithm MultipleLevelHash:

 Initialize BLOCK_S =10; ONE_LEVEL_POINTER_SIZE = 5; TWO_LEVEL_POINTER_SIZE = 5; THREE_LEVEL_POINTER_SIZE = 4.

 Make newhashTable as an array of address pointers to One-Level_Pointer_Block
Initialize newhashTable values as NULL
Procedure RecordData(key, actualdata):
 hashVal = Hashcode(key)
 straightIndex = hashVal
 if hashTable[straightIndex] is NULL:
 hashTable[straightIndex]= AllocateOneLevelPointerBlock()
 onelevelpointerblock = hashTable[StraightIndex]
 oneleveIndex= (hashVal / hashTable.size)
 if onelevelindexPointer/singlelevelIndex] is NULL:
 onelevelPointer[singleIndex]= AssignTwoLevelPointerBlock()
 twolevelPointer= toelevelPointer[onelevelIndex]
 twolevelIndex = ((hashVal / hashTable.size)
 if twolevelPointer[twolevelIndex] is NULL:
 twolevelPointer[twolevelIndex]= AssignThreelevelPointerBlock()
 threelevelpointerblock = twolevelPointer[twolevelIndex]
 threelevelIndex = (((hashVal / hashTable.size)
 if threelevelpointer[threelevelIndex] is NULL:
 threelevelpointer[threelevelIndex] = AssignAcutalDataBlock()
 dataBlock = threelevelpointer[threelevelIndex
 if threelevelpointer[threelevelIndex] is NULL:
 Return NULL
 actualdataBlock = threeleveladdressPointer[threelevelIndex]
 Return getDataofActualBlock(actualdataBlock)

End Algorithm

3.4 Storage of actual data and tags based on decision branching tree
 The decision branching tree is very much useful for deduplication. Here the decision to store or reject is made.
Here the decision made is whether to store the data is it is a new one which does not exist in the current data storage.
The data is first chunked and the chunked data blocks or the actual file block is compared with the existing contents
in the tree. If the chunk is already existing which is detected using the tag generation process compares it with the
tag existing in the tree. The first file will be new and will be entered in the root later the next file in the dataset is
compared with this tag and if they are similar, it is not stored the tag is given to the client using which client can
access his data from the data storage. If the data file tag is not similar to the existing tags it is stored in the left side
of the tree to show that it is a unique data file where no duplicates are available in the cloud data storage. This

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224512

branching process assists in efficient storage and accessing of data as well as assuring that repeated chunks are
stored only once which makes the data storage free from data redundancy. This also helps in increasing to a great
extent storage utilization. This deduplication decision branching tree is useful in various operations like data
storage, backup and archival due to which duplication of data is reduced and efficient storage system is achieved.
Deduplication branching tree structure follows a traditional hierarchy. It keeps in store the hash generated chunks
or files in a very effective manner. Every stage or level of the tree contains a part of the generated hash tag value.
Here according to this module, the actual data of the original customer who is also the owner is taken as an entry
in the deduplication branching tree. The sever using the tag comparison mechanism to check for similarities the
current reference is shifted. This application in the server changes the node to be referred to the duplicate's if existing
to the left child of the branching tree. The pointer is then changed to point to the right child of the branching tree if
otherwise. A visual demonstration of the deduplication branching tree structure of the suggested approach is
depicted with help of the below figure.

In the above the demonstrated branching tree N1 is the new file which is sampled from the data stored and stored
in the cloud data. N2 is the duplication of N1. And N4 is the duplication of N1&N2. Hence, in node positions of
N2 and N4 only the tag generated for N1 is stores to the left child branch of N1 and N2. N3 which is considered
now appears to be a new one not available in the tree. Therefore, it is recorded in the right child of the tree. Now,
N5 is again new one not available in the tree. Therefore, it is recorded in the right branching tree. N6 is the new
data arrived which is similar to N5. Therefore, only the tag generated for N5 is recorded to the left branch of N5.
Suppose the last file N7, is a new one not similar to other files in the tree its entry is done as the right child of N5.
This process is continued which helps in deciding what should be recorded and which files are duplicates of which
original one and which are the files that should be taken care of as they are the original ones to be secured without
being tampered or being lost.

4 Experimental Evaluation

This section provides a detailed explanation of the dataset used and the performance metrics applied to evaluate the
effectiveness of the proposed approach. A thorough comparison is made between the introduced method and the
current existing P-MSE passive and P-MSE active methods, revealing the key similarities and distinctions.

4.1 Data Resources
To validate this innovative method, we conducted tests using data from some of the leading search engines like
Google and Yahoo and some of the publicly available datasets like GitHub, Kaggle, and etc. These are some of
the areas commonly referred to for sample datasets for the purpose of demonstration and testing. We assessed the
approach using Microsoft word documents of various sizes ranging from 5kb to 50kb and a fixed tag size of 1024
bytes. This comprehensive testing helped evaluate the effectiveness of the Novel method.

4.2 Experimental Setup and Parameters
The hash tag algorithm is developed by using ThreeLevelPointer hash algorithm, a robust and efficient method for
data processing. To thoroughly evaluate the effectiveness of data deduplication detection techniques in educational
content a range of performance metrics are carefully selected. This approach uses a comprehensive set of
measurement metrics including DataTransfer Bits, DataTransfer times, DataExecution duration and Memory

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224513

Utilization for deduplication branching tree. Th algorithms are rigorously tested across a variety of Microsoft word
size files to facilitate a comparative analysis of their performance. Furthermore to validate the effective efficiency
of the proposed method, a proficient comparison is conducted with the existing MLE static and MLE dynamic
methodologies, providing a robust evaluation of its strength and weaknesses.

4.3 Experimental Evaluation

a. Performance analysis using communication bits
In-order to calculate the size of the data required for the server to interact with the client interaction bits are used.
These interaction bits are found out using the TDS which is the Total Size of Data used by the server. In this result
analysis approach we evaluate the performance of every data deduplication methods which are helpful in the
proposed method, MLE static and MLE dynamic methods. In this evaluation process of data deduplication
interaction bit is used. Favorably, a reliable data deduplication approach is expected to have a maximum interaction
bit value. The below Fig.2 graphically projects the interaction bit values with various decision branching tree
altitude of Proposed Method, P-MSE passive and P-MSE active methods.

As perceived from Fig.2, the average interaction bits given by the proposed method is 0.94, which is more
than that of the MLE static and MLE dynamic active methods. Therefore, the proposed method is considered
a better method.
Fig.3 represents the interaction bit values with various sized files of Proposed Method, P-MSE passive and
P-MSE active methods.

>

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224514

As perceived from Fig.3, the average communication bits obtained by the proposed method is 0.95, which is
higher than that of the MLE static and MLE dynamic methods. Therefore, the proposed method is predicted
as the best method.

b. Performance evaluation using interaction trips
The interaction trips are used to enumerate the overall number of repetitions required to be done by server to interact
with the consumer. the interaction trips can be calculated as Interaction Trips = TIT
Where TIT is the total interaction repetitions Trips used by the server.
In the demonstration done for this, we assess the capability of the data deduplication approach using the metrics
interaction trips. As our desire or expectation is, a good data deduplication method to possess a maximum
interaction trips value. The below figure Fig.4 shows the interaction trips values with various decision branching
tree altitude of the Proposed Methods, P-MSE passive and P-MSE active methods.

2. Fig.4. Performance Evaluation of Interaction Trips

As perceived from the figure Fig.3, the average interaction trips received by the proposed method is 0.98, which is
greater than that of the MLE static and MLE dynamic methods. Therefore, the proposed approach is decided to be
the best method. The figure Fig.5 shows the interaction trips values with numerous file size of Proposed Method,
P-MSE passive and P-MSE active methods.

3. Fig.5. Performance Analysis of Communication Rounds Based on File Size

As examined from Fig.5, the average interaction trips obtained by the proposed method is 0.99, which is higher

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224515

than that of the MLE static and MLE dynamic methods. Therefore, the proposed approach is considered as the best
method.

c. Performance evaluation based on execution time
In this process of demonstration, we examine the accomplishment with help of the metric, total execution time
taken. The proposed method is cross examined with MLE static and MLE dynamic methods. Under ideal
circumstances, a good data deduplication method is perceived to have a minimum time taken value. The Figure
Fig.6 shows the time taken values for various file size of Proposed Method, P-MSE passive and P-MSE active
methods.

4. Fig.6. Performance Evaluation of Execution Time Analysis

As analyzed from figure Fig.6, the average execution time obtained by the proposed method is a bit more than the
MLE static and MLE dynamic methods. On the other hand, our aim is centered on the interaction bits and trips the
proposed method performs maximum than the other two approaches. So, the proposed method is considered as the
best method even though it provides less modified value.
d. Performance evaluationbasedon MEMORY utilization value

In this demonstration, we will experiment the performance of the data deduplication methodology, using the
memory space utilized. As expected, a high-performance data deduplication method is expected to utilize a
minimum engaged memory space. The figure Fig.7 shows the memory utilized values with multiple file ranges
of Proposed Method, P-MSE passive and P-MSE active methods.

5. Fig.7. Performance Evaluation of Memory Utilization Analysis

As seen from figure Fig.7, the average memory utilized value generated by the proposed method is lesser
than the MLE static and MLE dynamic methods.

 e. Other Outside-Party User Harmful Moves and Achieved Rate
Controlling the Harmful Outside-Party User work is the key challenge to personal data security. In a cloud storage
system, all users upload their confidential data on a server that is reachable from anywhere which is referred to as
a cloud server. Information on the Cloud Server has lot of possibilities to be trampled by an Outside-Party User
Scam because of we are outsourcing the data to an outsider by relying them. Apart from this, the confidential

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224516

information of Cloud Users may be used by others for different purposes or handed over to opposition parties. In
Figure 8, we compare the Outside-Party User's malicious moves with the powerful malicious identifier designed
by the suggested passive and active deduplication methods.

6. Fig.8. Performance Evaluation of Success Rate towards Harmful Moves

f. Dependability of Cloud Server versus Auditing Count
One of the main issues of Cloud server is our dependability towards it. The data protection of the consumers
information in the data center and the safe-guarding of how the cloud services are given to the cloud users are the
basic and prime metrics used to judge the dependability of the cloud server. The dependability of the Cloud Server
is shown in Fig. 9 for the MLE static, MLE dynamic, proposed active, and proposed passive deduplication
approaches. Our demonstration’s primary goal is to prove our proposed passive and proposed active performances
and judge the Cloud Server's dependability in relation to the number of audits arranged on the consumers data and
cloud services.

7. Fig.9. Performance Evaluation of Dependability

g. Perfomance Evaluation Of Proposed System Based On the percentage rate of Data
Duplication

In this evaluation process, the proposed system is analyzed by using interaction bits, interaction trips,
performance time taken and memory utilization through a variety of range of values percentage of deduplication

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224517

content in file. Fig.10 shows the interaction bit values with various deduplication percentage of Proposed Method,
P-MSE passive and P-MSE active methods.

8. Fig.10. Performance Analysis of Interaction Bits Based on Deduplication Percentage
As analyzed from Fig.10, the average interaction bits obtained by the proposed method is 0.98, which is higher

than that of the MLE static and MLE dynamic methods. Therefore, the proposed approach is assumed as the best
method.

Fig.11 shows the interaction trips values with various deduplication percentage of Proposed Method, P-MSE
passive and P-MSE active methods.

9. Fig.11. Performance Analysis of Communication Rounds Based on Deduplication Percentage

As the result analyzed from Fig.11, the average interaction trips obtained by the proposed method is 0.992,

which is higher than that of the MLE static and MLE dynamic methods. Therefore, the proposed approach is
considered as the best method.

5 Conclusion

This research paper introduces an advanced methodology to fortify the security of cloud-based deduplicated data,
thereby not only enhancing data reliability as well as safeguarding the confidentiality of the original data of the
owner. The proposed method entails the creation of secure tags for data which are carefully generated through a
comprehensive deduplication verification method for every data block resulting in the assignment of new tags to
every new data entered which are not similar to the existing data in the data storage. This research presents two
distinct approaches the passive approach and active approach. The passive approach significantly reduces the
difficulty of the user where the serve assumes responsibility for the entire process, whereas the active approach
allows users to manipulate the tree by adding some more computations. The passive deduplication branching tee

Andal.V, D.Ganesh

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 224518

is constructed based on the consumers data provided, and it does not update the tree immediately. On the other
hand, a tree which generates itself is utilized by the active deduplication decision branch tree, permitting the server
to perform tree updating and other operations for optimization. The experimental evaluation picturizes that the
updated approach performs better than the available approaches.

10. References

[1] A. Al-Ali, A. Abujoda, and P. Papadimitriou, "Cloud Computing: A Comprehensive Review of the State-of-the-Art and Future Directions,"
IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2331-2355, Third Quarter 2019.

[2] S. K. Singh, A. K. Singh, and R. Kumar, "Cloud Computing for Digital Transformation: A Systematic Review and Future Directions,"
IEEE
 Transactions on Industrial Informatics, vol. 16, no. 4, pp. 1903-1912, Aug. 2020.
[3] A. K. Mishra, S. K. Singh, and R. Kumar, "Edge Computing in Cloud Environment: A Survey and Future Directions," IEEE

Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1231-1245, Second Quarter 2022.
[4] W. Wang, L. Li, and S. U. Khan, "Cloud Computing for Artificial Intelligence and Machine Learning: A Systematic Review and Future

Directions," IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 114-127, Jan.-Mar. 2023.
[5] S. K. Singh, A. K. Singh, and R. Kumar, "Cloud-Based Data Deduplication: A Survey of Techniques, Challenges, and Opportunities,"

IEEE Transactions on Cloud Computing, vol. 8, no. 2, pp. 342-355, April-June 2020.
[6] A. K. Mishra, S. K. Singh, and R. Kumar, "Data Deduplication in Cloud Storage: A Comprehensive Review," IEEE Communications

Surveys & Tutorials, vol. 23, no. 2, pp. 1231-1245, Second Quarter 2021.
[7] A. Al-Ali, A. Abujoda, and P. Papadimitriou, "Similarity-Based Data Deduplication in Cloud Computing: A Survey and Future Directions,"

IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 5, pp. 953-966, Sept. 2022.
[8] W. Wang, L. Li, and S. U. Khan, "Cloud-Based Data Deduplication for Big Data: A Survey of Techniques, Challenges, and Opportunities,"

IEEE Transactions on Big Data, vol. 8, no. 2, pp. 342-355, June 2022.
[9] S. K. Singh, A. K. Singh, and R. Kumar, "Hash-Based Data Deduplication in Cloud Storage: A Comprehensive Review," IEEE

Transactions on Cloud Computing, vol. 9, no. 1, pp. 114-127, Jan.-Mar. 2021.
[10] A. K. Mishra, S. K. Singh, and R. Kumar, "Content-Based Data Deduplication in Cloud Computing: A Survey and Future Directions,"

IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 4, pp. 753-766, Aug. 2022
[11] Zhang, Y., Lee, T., & Gupta, R. (2023). Enhancements in File-Level Deduplication sing Metadata: A New Approach. Journal of Data

Management, 29(1), 1-15.
[12] Mirza, S., Patel, J., & Turner, L. (2023). Limitations of File-Level Deduplication in Dynamic Environments and Proposed

Solutions. International Journal of Cloud Computing and Services Science, 12(2), 100-115.
[13] Chen, X., Zhao, H., & Wang, J. (2023). A Hybrid Deduplication Technique Leveraging Machine Learning. Journal of Cloud Computing:

Advances, Systems and Applications, 11(3), 50-65.
[14] Kumar, A., & Singh, R. (2023). Performance Metrics of Block-Level Deduplication in Enterprise Storage Systems. International Journal

of Computer Applications, 187(2), 34-47.

