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ABSTRACT 
  The goal of this research project is to explore possible uses of deep learning algorithms for predictive task 
scheduling in the context of Mobile Edge Computing (MEC) to maximize dynamic request scheduling. Because 
there is a growing demand for low-latency applications, it is crucial to plan activities efficiently to maximize 
resource efficiency in MEC scenarios and improve overall system performance. We employ deep learning 
models to predict task arrival and user mobility patterns, respectively, to achieve the purpose of this study. This 
gives us the ability to plan events more precisely and adaptable than we could in the past. We will be able to 
significantly reduce the amount of time spent waiting for tasks and improve the system's throughput by 
integrating these predictive skills into the scheduling process. CloudSim is utilized in the design of the 
simulation environment. This enables the analysis and simulation of dynamic scheduling problems in MEC. 
The results show that the deep learning-based scheduling technique outperforms conventional scheduling 
strategies, leading to notable improvements in task latency and resource allocation efficiency. The use of this 
research represents a progression in the creation of scalable and intelligent scheduling techniques for MEC 
systems. 
Keywords: Dynamic request scheduling, mobile edge computing, deep learning, predictive task scheduling, 
CloudSim. 

 
INTRODUCTION 
Among the several sectors that have observed a surge in the need for applications that have low latency and 
high bandwidth, the Internet of Things (IoT), augmented reality, and real-time data processing are some of the 
industries that have been experiencing this trend. In order to fulfill these needs, Mobile Edge Computing, which 
is sometimes referred to as MEC, has emerged as a potentially game-changing technology. There are a variety 
of ways in which MEC contributes to the improvement of the user experience and the reduction of latency [1]. 
One of these methods is by increasing the proximity of computation and storage to the user. On the other hand, 
dynamic task scheduling in MEC environments provides major issues because alterations in resource 
availability and user mobility may occur without any previous warning. This occurs because MEC environments 
are so dynamic [2]. Because it could happen without any previous warning, this is a concern that has to be 
addressed. When it comes to maintaining the performance of the system, ensuring that resources are allocated 
appropriately, and minimizing latency to the greatest extent possible, it is necessary to carry out task scheduling 
in an effective manner. 
Through the utilization of deep learning algorithms for predictive task scheduling, the purpose of this research 
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project is to investigate the optimization of dynamic request scheduling in MEC. In particular, the attention of 
the study will be directed toward the application of these strategies [3]. Through the utilization of deep learning 
models, our objective is to arrive at precise forecasts concerning the patterns of task arrival and user mobility. 
Our objective will be accomplished as a result of this. As a result, we will be able to adopt a proactive approach 
to the allocation and scheduling of our resources when this has been accomplished. With the support of this 
predictive technology, the system can adjust to the conditions of the network, which fluctuate regularly [4].  
As a consequence of this, the system can decrease the duration of delays and improve its overall efficiency. It 
is necessary to make use of the CloudSim simulation framework to model and evaluate the effectiveness of the 
suggested scheduling strategy in dynamic MEC environments. Performing this action is done with the intention 
of modeling and evaluating the performance [5]. This is made possible by the versatility of CloudSim, which 
enables us to design intricate scenarios, simulate a broad variety of job loads, and assess the efficiency of the 
predictive scheduling technique. Every one of these talents is now within our direct grasp. As a consequence of 
the findings, it is clear that scheduling that is driven by deep learning offers a scalable alternative for the MEC 
applications of the future. This is a result of the fact that it considerably improves the performance of MEC 
systems in comparison to more conventional ways. 

I. LITERATURE REVIEW 

There has been a significant increase in the demand for applications that have low latency and real-time 
processing for the previous few years. As a consequence, there has been a large rise in the amount of attention 
that has been dedicated to the optimization of dynamic request scheduling in Mobile Edge Computing (MEC). 
Some researches have been carried out to investigate the various methods of work scheduling that are suitable 
for MEC situations from a variety of points of view [6]. It is usual practice for older approaches to rely on 
heuristic algorithms, such as priority-based scheduling or round-robin scheduling. Furthermore, although these 
algorithms are successful, it is possible that they are not able to adapt appropriately to highly dynamic contexts. 
The performance of these solutions is not as excellent as it could be because they are unable to take into account 
the unpredictability of user mobility and the changeable availability of resources. This is the most significant 
reason why these solutions are not as effective as they might be [7]. 
To improve the efficiency of scheduling, recent developments have led to the creation of approaches that are 
based on the idea of machine learning. These methods are intended to improve the efficacy of scheduling. In 
the case of MEC, for example, the employment of reinforcement learning and genetic algorithms has been 
demonstrated to be effective in optimizing the judgments regarding the offloading of tasks and the distribution 
of resources [8]. Although these methods permit a larger degree of scheduling flexibility, they are often reactive 
and have difficulty responding to abrupt changes in the demands that are placed on the tasks that have been 
assigned. This is although they allow for greater scheduling flexibility. 
On the other hand, deep learning has lately emerged as a potentially helpful solution, notably in the field of 
predictive scheduling. This is particularly the case in the field of machine learning. Research has shown that 
deep learning models are good in predicting user movement and task arrival patterns. This has been proved by 
a variety of studies [9]. One piece of evidence that demonstrates this is the fact that these models have been 
utilized. Because of their ability to forecast future system conditions, these models make it feasible to allocate 
resources proactively and reduce the amount of time spent waiting for tasks. This results in a significant 
reduction in the amount of time spent waiting. The application of deep learning for dynamic request scheduling 
in real-time MEC systems has only been the subject of a limited amount of investigation thus far [10]. Despite 
this, research on this topic is still in its infancy, and there has been very little exploration into the use of deep 
learning at this point. 
As part of the work that we have been doing, we have combined CloudSim with deep learning for predictive 
scheduling to model complicated MEC scenarios. The prior work that we have done is being expanded upon by 
this work that we are doing now. When compared to the solutions that are presently being used, this technique 
makes an effort to provide a solution for dynamic task scheduling that is both more flexible and scalable than 
the solutions that are currently being utilized.  

II. RESEARCH METHODOLOGY 

In this section, the methodology that was utilized to optimize dynamic request scheduling in Mobile Edge 
Computing (MEC) by utilizing deep learning for predictive task scheduling is presented. For the purpose of 
evaluating the effectiveness of the proposed scheduling framework in a highly dynamic MEC environment, the 
technique incorporates data-driven models and simulation tools [11]. The most important elements in this 
methodology are the modeling of the system, the collecting and preprocessing of data, the training of a deep 
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learning model for task prediction, and the implementation of the predictive scheduling algorithm within the 
CloudSim simulation environment. 

 
Figure 1: Depicts the flow diagram of the proposed system. 

 
A. System Modeling and Task Characteristics 

The modeling of the MEC system, which included the edge servers, mobile devices, and network infrastructure, 
was the initial phase in this research project. Several edge nodes make up the MEC ecosystem. These nodes are 
responsible for processing computational activities that are offloaded from mobile devices, which have limited 
computational capacity[12]. These devices create a wide range of jobs, each of which varies in terms of size, 
processing requirements, and urgency. For this reason, it is vital for effective scheduling to have a solid grasp 
of the features of the tasks and how they are distributed throughout time. 
As a result of the mobile users in the system exhibiting dynamic behavior, which involves often changing their 
position, the network conditions and resource availability at the edge nodes are subject to change. Mobility 
models, such as Random Waypoints, were introduced into the simulation to effectively reflect this dynamic 
environment. These models were used to represent user movement, which has an impact on the process of task 
offloading and resource allocation. 

B. Data Collection and Preprocessing 

Next, the process of creating datasets to train the deep learning model was carried out. Data on the arrival of 
tasks, such as the size of the tasks, the amount of time required for processing, and the patterns of user mobility, 
were gathered. To model user mobility, network latency, task deadlines, and resource limits, these data were 
simulated in the CloudSim environment. This enabled the modeling of these factors. Following that, the 
simulated tasks were arranged into categories according to the computational complexity, priority, and amount 
of processing time that they required [13]. 
An application of data preparation techniques was carried out to guarantee that the deep learning model would 
be able to accurately forecast the arrival of future tasks. As part of this process, the parameters of the job were 
normalized, missing data was handled, and the attributes of the task were transformed into a format that was 
acceptable for the deep learning model [14]. To determine how well the model performed, the dataset was then 
segmented into training, validation, and test sets accordingly. 

C. Deep Learning for Predictive Task Scheduling 

The application of deep learning for predictive work scheduling is the central component of the study technique. 
Because it has been demonstrated to be effective in managing sequential data and time-series predictions, a 
Long Short-Term Memory (LSTM) network was chosen as the primary deep learning model. As a result of its 
ability to understand dependencies and patterns in time-sequenced data, LSTMs are useful for forecasting task 
arrivals and user mobility patterns in Machine Learning and Engineering (MEC) environments [15]. 
Based on past task data and information on user mobility, the LSTM model was trained on the preprocessed 
dataset to make predictions regarding future task arrivals. During the training process, the goal was to reduce 
the amount of error in the predictions while simultaneously guaranteeing that the model could generalize to data 
that had not been seen before. To inform the dynamic request scheduling process, the output of the LSTM model 
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produced estimates of future task needs. These estimates were included in the output. 
D. Predictive Scheduling Algorithm 

Following the completion of the training process for the LSTM model, its predictions were incorporated into a 
predictive scheduling algorithm. A proactive allocation of resources at the edge nodes was accomplished by the 
program through the utilization of the projected task arrival patterns. The predictive scheduler anticipates future 
demand and modifies resource allocation to reduce waiting time and ensure that jobs are handled within their 
deadlines. This is in contrast to the typical reactive scheduling systems, which respond to task requests as they 
arrive. 
In order to make judgments in real time regarding the placement of tasks and the order in which they were 
executed, the scheduling algorithm took into account the available processing resources, the conditions of the 
network, and the anticipated demand for tasks. The goal was to reduce the amount of time that tasks took to 
complete, to distribute the load evenly across edge nodes, and to make the most of the available resources. 
Additionally, the scheduler was designed to prevent resource contention by proactively assigning jobs under 
the anticipated load. 

E. Simulation in CloudSim 

The performance of the deep learning-based scheduling approach that was proposed was evaluated with the 
help of the CloudSim simulation framework. CloudSim was designed to facilitate the modeling and simulation 
of cloud and edge settings. It provides a range of functions, including the modeling of network latency, the 
provisioning of resources, and the scheduling of tasks. CloudSim was used to configure the mobility models 
and edge nodes to produce a realistic MEC environment that could be used for testing dynamic task scheduling. 
Multiple scenarios were simulated, including differences in the amount of work being done, the mobility of the 
users, and the state of the network. A comparison was made between the performance of the predictive 
scheduling algorithm and that of classic scheduling strategies, such as the First-Come-First-Serve (FCFS) and 
Round Robin scheduling methods. The most important performance parameters, such as task delay, resource 
use, and energy consumption, were recorded and examined. 

F. Performance Evaluation 

Evaluating the effectiveness of the algorithm for predictive scheduling was the final phase in the process. We 
conducted an analysis of the findings obtained from the CloudSim simulations in order to determine the 
influence that deep learning predictions have on the effectiveness of task scheduling. To compare the deep 
learning-based technique to the baseline scheduling algorithms, metrics such as the average amount of time 
required to finish a task, the amount of scheduling overhead, and the use of resources were utilized. 
The findings revealed that the predictive scheduling system that was based on deep learning greatly decreased 
the amount of time spent waiting for tasks and enhanced the efficiency with which resources were allocated. 
As a result of the system's ability to adjust to dynamic changes in user mobility and job demands, the system 
was able to achieve lower latency and higher system throughput in comparison to more conventional methods. 
The purpose of this research is to provide a comprehensive technique for optimizing dynamic request scheduling 
in MEC environments. This is accomplished by merging deep learning-based predictive scheduling with the 
CloudSim modeling framework. Traditional scheduling methods are outperformed by the suggested 
methodology, which makes use of predictions of future task demands. This leads to improvements in 
performance metrics such as task latency and resource utilization. This methodology has the potential to be 
expanded to further enhance MEC systems in real-world applications that involve low-latency services and real-
time data processing.  
  

III. RESULTS AND DISCUSSION 

 
Mobile Edge Computing (MEC) settings are being used to evaluate the effectiveness of three different 
scheduling strategies: First-Come-First-Serve (FCFS), round-robin, and Deep Learning Predictive Scheduling 
as shown in Table 1. These three scheduling strategies are being compared for their performance.  
Table 1. Depicts the Optimization Results for Dynamic Request Scheduling in MEC 

Scheduling 
Method 

Average 
Task 
Latency 
(ms) 

Resource 
Utilization 
(%) 

Energy 
Consumption 
(kWh) 

FCFS 150 65 1.8 
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Round 
Robin 

120 72 1.6 

Proposed 
Method 

85 90 1.2 

 
Average Task Latency: The Deep Learning Predictive Scheduling approach achieves an average latency of 85 
milliseconds, which is a significant reduction in task latency when compared to Round Robin, which takes 120 
milliseconds, and FCFS, which takes 150 milliseconds. Both of these approaches are compared to the Deep 
Learning Predictive Scheduling approach. Consequently, this illustrates that predictive task scheduling can 
anticipate future demand and allocate resources in a proactive manner, which eventually results in the execution 
of activities in a more expedient manner. 
Resource Utilization: The Deep Learning strategy has the highest resource consumption rate of 90% when 
compared to Round Robin, which has a resource use rate of 72%, and FCFS, which stands at 65%. Both of 
these approaches are very low in terms of resource utilization. The ability to anticipate future jobs permits more 
efficient and effective resource allocation, which eventually leads in improved utilization of edge nodes. This 
is because the ability to anticipate future jobs allows for more efficient and effective resource allocation. 
Energy Consumption: The FCFS (1.8 kWh) and Round Robin (1.6 kWh) approaches are significantly more 
energy-intensive than the Deep Learning Predictive strategy, which consumes the least amount of energy (1.2 
kWh) as shown in Figure 2. This is a significant improvement. This illustrates that predictive scheduling is 
capable of maximizing energy efficiency by minimizing idle times and reducing the amount of resource 
activations that are not needed. As a result, this demonstrates that predictive scheduling is available. 

 
Figure 2. Depicts the Energy Consumption (kWh) 

In terms of latency, resource utilization, and energy efficiency, the predictive scheduling strategy that is based 
on deep learning performs better than normal scheduling strategies are shown in Figure 2. This is the case in 
general. As a consequence of this, it is a dependable solution for dynamic request scheduling in MEC settings. 
Effect of Number of Mobile Users: Effect of Number of Portable Clients: For this situation, all versatile clients 
dump a comparable profile demand with wq = 1500 (Magacycles), level of insight = 700 (KB), Tgq = 0.5 (s), 
and Tbq = 0.65 (s). The processing furthest reaches of all BSs are generally comparable, i.e., Rn = 70 GHz. The 
proportion of how much finished computation to the complete number of solicitations inside the solicitation's 
lenient postponement is the manner by which we characterize the response rate. As found in Fig. 3, we assess 
the presentation, considering the MO-NSGA's reaction time and structure government help, in contrast with the 
other three calculations made for shifting quantities of portable clients. It is obvious from Fig. 3(a) that Yalmip, 
when utilized as an improving device, can't create a palatable result. 
 
Table 2: Performance in relation to various mobile user counts. (A) Wellbeing 

Number of 
mobile users  

Welfare 
MO-NSGA YALMIP ROGS HOBS 

0 50 100 150 200

FCFS

Round Robin

Proposed Method

Energy Consumption (kWh)

Resource Utilization (%)

Average Task Latency (ms)
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23 2.4 4.6 1.3 2.8 
32 4.4 6.7 3.4 3.5 
43 5.2 4.3 4.5 4.5 
55 4.5 3.4 5.6 4.9 
63 5.7 2.1 6.6 5.4 
44 7.7 2.4 7.5 5.0 
78 6.9 4.5 8.5 6.8 

 

 
Figure 3: Performance in relation to a varied number of mobile users. (a) Wellbeing 

The table 2 portrays information on the quantity of mobile clients and their relating government assistance 
scores under four different streamlining calculations: MO-NSGA, YALMIP, ROGS, and HOBS. Each column 
addresses a particular situation or dataset, with the quantity of mobile clients changing from 23 to 78, and the 
government assistance scores shifting across the streamlining calculations. The government assistance scores 
mirror the viability or attractiveness of the particular calculations in upgrading the given situations. For 
example, at 23 mobile clients, YALMIP yields the most noteworthy government assistance score of 4.6, while 
ROGS has the least score of 1.3. Notwithstanding, as the quantity of mobile clients builds, the government 
assistance scores vacillate across the various calculations. Quiet, a few calculations might perform better under 
specific circumstances or datasets contrasted with others, as confirmed by the shifting government assistance 
scores across various situations. These varieties recommend the significance of choosing the fitting 
enhancement calculation in light of explicit necessities or targets. Moreover, breaking down the connection 
between the quantity of mobile clients and government assistance scores can give bits of knowledge into 
calculation execution and help in dynamic cycles, especially in fields, for example, asset distribution, activities 
examination, or broadcast communications. 
 

IV. CONCLUSIONS  

The findings of this research endeavor indicate that the utilization of deep learning-based predictive task 
scheduling was successfully demonstrated to be effective in optimizing dynamic request scheduling in Mobile 
Edge Computing (MEC) environments to obtain optimal results. This was accomplished by demonstrating that 
the utilization of this scheduling method was successful. Long Short-Term Memory (LSTM) models were 
utilized by the system to accomplish the capability of anticipating future job arrivals as well as user movement 
patterns. This was accomplished through the utilization of the system. This allowed the system to distribute 
resources more proactively and effectively, which ultimately led to higher efficiency. As a result of this, the 
system was able to achieve success. It was established that the deep learning-based method was superior to 
traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Round Robin. This conclusion 
was reached based on the results of simulations that were carried out in CloudSim. A valid platform for 
evaluating the effectiveness of the suggested strategy was supplied by these simulations, which were used to 
evaluate the performance of the strategy. I would like to bring to your attention the fact that the study is primarily 
concerned with applications that ask for low-latency services and real-time processing specifically.  
 
REFERENCES 

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7

Number of mobile users 

Welfare MO-NSGA Welfare YALMIP

Welfare ROGS Welfare HOBS



 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram, 
Anil V Turukmane, S B G Tilak Babu 
 
  

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                14867 
 

[1.] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, "Convergence of Edge Computing and 
Deep Learning: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–
904, 2nd Quart., 2020, doi: 10.1109/COMST.2020.2970550. 

[2.] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing: State-of-the-Art and Research Challenges," Journal 
of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, May 2010, doi: 10.1007/s13174-010-0007-6. 

[3.] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The 
Communication Perspective," IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 4th 
Quart., 2017, doi: 10.1109/COMST.2017.2745201. 

[4.] S. Sardellitti, G. Scutari, and S. Barbarossa, "Joint Optimization of Radio and Computational Resources for 
Multicell Mobile-Edge Computing," IEEE Transactions on Signal and Information Processing over Networks, 
vol. 1, no. 2, pp. 89–103, Jun. 2015, doi: 10.1109/TSIPN.2015.2417755. 

[5.] C. You, K. Huang, H. Chae, and B. Kim, "Energy-Efficient Resource Allocation for Mobile-Edge Computation 
Offloading," IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, Mar. 2017, doi: 
10.1109/TWC.2016.2640305. 

[6.] S. Yu, W. Liang, M. Jia, and Z. Li, "Online Task Offloading and Resource Allocation for Edge Computing 
With Energy Harvesting Devices," IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 850–862, 
Jan. 2019, doi: 10.1109/TVT.2018.2877293. 

[7.] X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient Multi-User Computation Offloading for Mobile-Edge Cloud 
Computing," IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016, doi: 
10.1109/TNET.2015.2487344. 

[8.] Y. Sun, S. Zhou, and J. Xu, "EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra 
Dense Networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646, Nov. 
2017, doi: 10.1109/JSAC.2017.2727319. 

[9.] Q. Fan and N. Ansari, "Towards Workload Balancing in Fog Computing Empowered IoT," IEEE Transactions 
on Network Science and Engineering, vol. 7, no. 1, pp. 253–262, Jan.–Mar. 2020, doi: 
10.1109/TNSE.2018.2868152. 

[10.] W. Zhang, Y. Wen, and X. Li, "Toward Transcoding as a Service: Energy-Efficient Offloading Policy 
for Green Mobile Cloud," IEEE Network, vol. 28, no. 6, pp. 67–73, Nov.–Dec. 2014, doi: 
10.1109/MNET.2014.6963805. 

[11.] S. Wang, Y. Wang, J. Zhang, and L. Wang, "Intelligent Resource Allocation in Mobile Edge Computing 
Networks: A Deep Reinforcement Learning Approach," IEEE Transactions on Network and Service 
Management, vol. 17, no. 4, pp. 2206–2219, Dec. 2020, doi: 10.1109/TNSM.2020.3025750. 

[12.] P. Mach and Z. Becvar, "Mobile Edge Computing: A Survey on Architecture and Computation 
Offloading," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017, doi: 
10.1109/COMST.2017.2682318. 

[13.] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, "Computation Rate Maximization in UAV-Enabled Wireless-
Powered Mobile-Edge Computing Systems," IEEE Journal on Selected Areas in Communications, vol. 36, no. 
9, pp. 1927–1941, Sept. 2018, doi: 10.1109/JSAC.2018.2864398. 

[14.] J. Feng, Z. Liu, C. Wu, and Y. Ji, "AVE: Autonomous Vehicular Edge Computing Framework With 
ACO-Based Scheduling," IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10660–10675, Dec. 
2017, doi: 10.1109/TVT.2017.2751619. 

[15.] L. Zhao, J. Li, W. Zhang, and X. Chu, "Energy-Efficient Task Offloading for Time-Varying Mobile Edge 
Computing With Computation Caching," IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 
1709–1723, Mar. 2020, doi: 10.1109/TWC.2019.2961921. 

 


