
Library Progress International
Vol.44 No. 3, Jul-Dec 2024: P. 14860-14867

Print version ISSN 0970 1052
 Online version ISSN 2320 317X

Original Article Available online at www.bpasjournals.com

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14861

Optimisation of Dynamic Request Scheduling in Mobile Edge
Computing

Dr.J.seetha1, Dr.P.Rama2, Dr.Gnanasaravanan Subramaniam3, Dr Archana
Ravindra Salve4 , Nagadevi Bala Nagaram 5 , Dr. Anil V Turukmane6, S B G Tilak
Babu7

1Associate professor, Department of Computer Science and Business Systems, Panimalar Engineering
College, Chennai - 600 123.
2Assistant Professor, Department of Computing Technologies, College of Engineering and Technology,
Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar,
Kattankulathur, 603203, TN, India.
3Assistant Professor, Karunya Institute of Technology and Sciences.
4Associate Professor, MBA faculty, Indira College of Engineering and Management, Pune, Maharashtra.
5Assistant Professor, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, No.42,
Avadi- Vel Tech Road, Avadi, Chennai- 600062, Tamil Nadu, India.
6Professor, School of Computer Science & Engineering, VIT-AP University, Vijaywada, Andra Pradesh.
7 Dept. of ECE, Aditya University, Surampalem, Andhra Pradesh

How to cite this article: J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve,
Nagadevi Bala Nagaram, Anil V Turukmane, S B G Tilak Babu (2024) Optimisation of Dynamic Request
Scheduling in Mobile Edge Computing. Library Progress International, 44(3), 14860-14867.

ABSTRACT
 The goal of this research project is to explore possible uses of deep learning algorithms for predictive task
scheduling in the context of Mobile Edge Computing (MEC) to maximize dynamic request scheduling. Because
there is a growing demand for low-latency applications, it is crucial to plan activities efficiently to maximize
resource efficiency in MEC scenarios and improve overall system performance. We employ deep learning
models to predict task arrival and user mobility patterns, respectively, to achieve the purpose of this study. This
gives us the ability to plan events more precisely and adaptable than we could in the past. We will be able to
significantly reduce the amount of time spent waiting for tasks and improve the system's throughput by
integrating these predictive skills into the scheduling process. CloudSim is utilized in the design of the
simulation environment. This enables the analysis and simulation of dynamic scheduling problems in MEC.
The results show that the deep learning-based scheduling technique outperforms conventional scheduling
strategies, leading to notable improvements in task latency and resource allocation efficiency. The use of this
research represents a progression in the creation of scalable and intelligent scheduling techniques for MEC
systems.
Keywords: Dynamic request scheduling, mobile edge computing, deep learning, predictive task scheduling,
CloudSim.

INTRODUCTION
Among the several sectors that have observed a surge in the need for applications that have low latency and
high bandwidth, the Internet of Things (IoT), augmented reality, and real-time data processing are some of the
industries that have been experiencing this trend. In order to fulfill these needs, Mobile Edge Computing, which
is sometimes referred to as MEC, has emerged as a potentially game-changing technology. There are a variety
of ways in which MEC contributes to the improvement of the user experience and the reduction of latency [1].
One of these methods is by increasing the proximity of computation and storage to the user. On the other hand,
dynamic task scheduling in MEC environments provides major issues because alterations in resource
availability and user mobility may occur without any previous warning. This occurs because MEC environments
are so dynamic [2]. Because it could happen without any previous warning, this is a concern that has to be
addressed. When it comes to maintaining the performance of the system, ensuring that resources are allocated
appropriately, and minimizing latency to the greatest extent possible, it is necessary to carry out task scheduling
in an effective manner.
Through the utilization of deep learning algorithms for predictive task scheduling, the purpose of this research

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14862

project is to investigate the optimization of dynamic request scheduling in MEC. In particular, the attention of
the study will be directed toward the application of these strategies [3]. Through the utilization of deep learning
models, our objective is to arrive at precise forecasts concerning the patterns of task arrival and user mobility.
Our objective will be accomplished as a result of this. As a result, we will be able to adopt a proactive approach
to the allocation and scheduling of our resources when this has been accomplished. With the support of this
predictive technology, the system can adjust to the conditions of the network, which fluctuate regularly [4].
As a consequence of this, the system can decrease the duration of delays and improve its overall efficiency. It
is necessary to make use of the CloudSim simulation framework to model and evaluate the effectiveness of the
suggested scheduling strategy in dynamic MEC environments. Performing this action is done with the intention
of modeling and evaluating the performance [5]. This is made possible by the versatility of CloudSim, which
enables us to design intricate scenarios, simulate a broad variety of job loads, and assess the efficiency of the
predictive scheduling technique. Every one of these talents is now within our direct grasp. As a consequence of
the findings, it is clear that scheduling that is driven by deep learning offers a scalable alternative for the MEC
applications of the future. This is a result of the fact that it considerably improves the performance of MEC
systems in comparison to more conventional ways.

I. LITERATURE REVIEW

There has been a significant increase in the demand for applications that have low latency and real-time
processing for the previous few years. As a consequence, there has been a large rise in the amount of attention
that has been dedicated to the optimization of dynamic request scheduling in Mobile Edge Computing (MEC).
Some researches have been carried out to investigate the various methods of work scheduling that are suitable
for MEC situations from a variety of points of view [6]. It is usual practice for older approaches to rely on
heuristic algorithms, such as priority-based scheduling or round-robin scheduling. Furthermore, although these
algorithms are successful, it is possible that they are not able to adapt appropriately to highly dynamic contexts.
The performance of these solutions is not as excellent as it could be because they are unable to take into account
the unpredictability of user mobility and the changeable availability of resources. This is the most significant
reason why these solutions are not as effective as they might be [7].
To improve the efficiency of scheduling, recent developments have led to the creation of approaches that are
based on the idea of machine learning. These methods are intended to improve the efficacy of scheduling. In
the case of MEC, for example, the employment of reinforcement learning and genetic algorithms has been
demonstrated to be effective in optimizing the judgments regarding the offloading of tasks and the distribution
of resources [8]. Although these methods permit a larger degree of scheduling flexibility, they are often reactive
and have difficulty responding to abrupt changes in the demands that are placed on the tasks that have been
assigned. This is although they allow for greater scheduling flexibility.
On the other hand, deep learning has lately emerged as a potentially helpful solution, notably in the field of
predictive scheduling. This is particularly the case in the field of machine learning. Research has shown that
deep learning models are good in predicting user movement and task arrival patterns. This has been proved by
a variety of studies [9]. One piece of evidence that demonstrates this is the fact that these models have been
utilized. Because of their ability to forecast future system conditions, these models make it feasible to allocate
resources proactively and reduce the amount of time spent waiting for tasks. This results in a significant
reduction in the amount of time spent waiting. The application of deep learning for dynamic request scheduling
in real-time MEC systems has only been the subject of a limited amount of investigation thus far [10]. Despite
this, research on this topic is still in its infancy, and there has been very little exploration into the use of deep
learning at this point.
As part of the work that we have been doing, we have combined CloudSim with deep learning for predictive
scheduling to model complicated MEC scenarios. The prior work that we have done is being expanded upon by
this work that we are doing now. When compared to the solutions that are presently being used, this technique
makes an effort to provide a solution for dynamic task scheduling that is both more flexible and scalable than
the solutions that are currently being utilized.

II. RESEARCH METHODOLOGY

In this section, the methodology that was utilized to optimize dynamic request scheduling in Mobile Edge
Computing (MEC) by utilizing deep learning for predictive task scheduling is presented. For the purpose of
evaluating the effectiveness of the proposed scheduling framework in a highly dynamic MEC environment, the
technique incorporates data-driven models and simulation tools [11]. The most important elements in this
methodology are the modeling of the system, the collecting and preprocessing of data, the training of a deep

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14863

learning model for task prediction, and the implementation of the predictive scheduling algorithm within the
CloudSim simulation environment.

Figure 1: Depicts the flow diagram of the proposed system.

A. System Modeling and Task Characteristics

The modeling of the MEC system, which included the edge servers, mobile devices, and network infrastructure,
was the initial phase in this research project. Several edge nodes make up the MEC ecosystem. These nodes are
responsible for processing computational activities that are offloaded from mobile devices, which have limited
computational capacity[12]. These devices create a wide range of jobs, each of which varies in terms of size,
processing requirements, and urgency. For this reason, it is vital for effective scheduling to have a solid grasp
of the features of the tasks and how they are distributed throughout time.
As a result of the mobile users in the system exhibiting dynamic behavior, which involves often changing their
position, the network conditions and resource availability at the edge nodes are subject to change. Mobility
models, such as Random Waypoints, were introduced into the simulation to effectively reflect this dynamic
environment. These models were used to represent user movement, which has an impact on the process of task
offloading and resource allocation.

B. Data Collection and Preprocessing

Next, the process of creating datasets to train the deep learning model was carried out. Data on the arrival of
tasks, such as the size of the tasks, the amount of time required for processing, and the patterns of user mobility,
were gathered. To model user mobility, network latency, task deadlines, and resource limits, these data were
simulated in the CloudSim environment. This enabled the modeling of these factors. Following that, the
simulated tasks were arranged into categories according to the computational complexity, priority, and amount
of processing time that they required [13].
An application of data preparation techniques was carried out to guarantee that the deep learning model would
be able to accurately forecast the arrival of future tasks. As part of this process, the parameters of the job were
normalized, missing data was handled, and the attributes of the task were transformed into a format that was
acceptable for the deep learning model [14]. To determine how well the model performed, the dataset was then
segmented into training, validation, and test sets accordingly.

C. Deep Learning for Predictive Task Scheduling

The application of deep learning for predictive work scheduling is the central component of the study technique.
Because it has been demonstrated to be effective in managing sequential data and time-series predictions, a
Long Short-Term Memory (LSTM) network was chosen as the primary deep learning model. As a result of its
ability to understand dependencies and patterns in time-sequenced data, LSTMs are useful for forecasting task
arrivals and user mobility patterns in Machine Learning and Engineering (MEC) environments [15].
Based on past task data and information on user mobility, the LSTM model was trained on the preprocessed
dataset to make predictions regarding future task arrivals. During the training process, the goal was to reduce
the amount of error in the predictions while simultaneously guaranteeing that the model could generalize to data
that had not been seen before. To inform the dynamic request scheduling process, the output of the LSTM model

System Modeling
and Task

Characteristics

Data Collection and
Preprocessing

Deep Learning for
Predictive Task

Scheduling

Predictive
Scheduling
Algorithm

Simulation in
CloudSim

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14864

produced estimates of future task needs. These estimates were included in the output.
D. Predictive Scheduling Algorithm

Following the completion of the training process for the LSTM model, its predictions were incorporated into a
predictive scheduling algorithm. A proactive allocation of resources at the edge nodes was accomplished by the
program through the utilization of the projected task arrival patterns. The predictive scheduler anticipates future
demand and modifies resource allocation to reduce waiting time and ensure that jobs are handled within their
deadlines. This is in contrast to the typical reactive scheduling systems, which respond to task requests as they
arrive.
In order to make judgments in real time regarding the placement of tasks and the order in which they were
executed, the scheduling algorithm took into account the available processing resources, the conditions of the
network, and the anticipated demand for tasks. The goal was to reduce the amount of time that tasks took to
complete, to distribute the load evenly across edge nodes, and to make the most of the available resources.
Additionally, the scheduler was designed to prevent resource contention by proactively assigning jobs under
the anticipated load.

E. Simulation in CloudSim

The performance of the deep learning-based scheduling approach that was proposed was evaluated with the
help of the CloudSim simulation framework. CloudSim was designed to facilitate the modeling and simulation
of cloud and edge settings. It provides a range of functions, including the modeling of network latency, the
provisioning of resources, and the scheduling of tasks. CloudSim was used to configure the mobility models
and edge nodes to produce a realistic MEC environment that could be used for testing dynamic task scheduling.
Multiple scenarios were simulated, including differences in the amount of work being done, the mobility of the
users, and the state of the network. A comparison was made between the performance of the predictive
scheduling algorithm and that of classic scheduling strategies, such as the First-Come-First-Serve (FCFS) and
Round Robin scheduling methods. The most important performance parameters, such as task delay, resource
use, and energy consumption, were recorded and examined.

F. Performance Evaluation

Evaluating the effectiveness of the algorithm for predictive scheduling was the final phase in the process. We
conducted an analysis of the findings obtained from the CloudSim simulations in order to determine the
influence that deep learning predictions have on the effectiveness of task scheduling. To compare the deep
learning-based technique to the baseline scheduling algorithms, metrics such as the average amount of time
required to finish a task, the amount of scheduling overhead, and the use of resources were utilized.
The findings revealed that the predictive scheduling system that was based on deep learning greatly decreased
the amount of time spent waiting for tasks and enhanced the efficiency with which resources were allocated.
As a result of the system's ability to adjust to dynamic changes in user mobility and job demands, the system
was able to achieve lower latency and higher system throughput in comparison to more conventional methods.
The purpose of this research is to provide a comprehensive technique for optimizing dynamic request scheduling
in MEC environments. This is accomplished by merging deep learning-based predictive scheduling with the
CloudSim modeling framework. Traditional scheduling methods are outperformed by the suggested
methodology, which makes use of predictions of future task demands. This leads to improvements in
performance metrics such as task latency and resource utilization. This methodology has the potential to be
expanded to further enhance MEC systems in real-world applications that involve low-latency services and real-
time data processing.

III. RESULTS AND DISCUSSION

Mobile Edge Computing (MEC) settings are being used to evaluate the effectiveness of three different
scheduling strategies: First-Come-First-Serve (FCFS), round-robin, and Deep Learning Predictive Scheduling
as shown in Table 1. These three scheduling strategies are being compared for their performance.
Table 1. Depicts the Optimization Results for Dynamic Request Scheduling in MEC

Scheduling
Method

Average
Task
Latency
(ms)

Resource
Utilization
(%)

Energy
Consumption
(kWh)

FCFS 150 65 1.8

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14865

Round
Robin

120 72 1.6

Proposed
Method

85 90 1.2

Average Task Latency: The Deep Learning Predictive Scheduling approach achieves an average latency of 85
milliseconds, which is a significant reduction in task latency when compared to Round Robin, which takes 120
milliseconds, and FCFS, which takes 150 milliseconds. Both of these approaches are compared to the Deep
Learning Predictive Scheduling approach. Consequently, this illustrates that predictive task scheduling can
anticipate future demand and allocate resources in a proactive manner, which eventually results in the execution
of activities in a more expedient manner.
Resource Utilization: The Deep Learning strategy has the highest resource consumption rate of 90% when
compared to Round Robin, which has a resource use rate of 72%, and FCFS, which stands at 65%. Both of
these approaches are very low in terms of resource utilization. The ability to anticipate future jobs permits more
efficient and effective resource allocation, which eventually leads in improved utilization of edge nodes. This
is because the ability to anticipate future jobs allows for more efficient and effective resource allocation.
Energy Consumption: The FCFS (1.8 kWh) and Round Robin (1.6 kWh) approaches are significantly more
energy-intensive than the Deep Learning Predictive strategy, which consumes the least amount of energy (1.2
kWh) as shown in Figure 2. This is a significant improvement. This illustrates that predictive scheduling is
capable of maximizing energy efficiency by minimizing idle times and reducing the amount of resource
activations that are not needed. As a result, this demonstrates that predictive scheduling is available.

Figure 2. Depicts the Energy Consumption (kWh)

In terms of latency, resource utilization, and energy efficiency, the predictive scheduling strategy that is based
on deep learning performs better than normal scheduling strategies are shown in Figure 2. This is the case in
general. As a consequence of this, it is a dependable solution for dynamic request scheduling in MEC settings.
Effect of Number of Mobile Users: Effect of Number of Portable Clients: For this situation, all versatile clients
dump a comparable profile demand with wq = 1500 (Magacycles), level of insight = 700 (KB), Tgq = 0.5 (s),
and Tbq = 0.65 (s). The processing furthest reaches of all BSs are generally comparable, i.e., Rn = 70 GHz. The
proportion of how much finished computation to the complete number of solicitations inside the solicitation's
lenient postponement is the manner by which we characterize the response rate. As found in Fig. 3, we assess
the presentation, considering the MO-NSGA's reaction time and structure government help, in contrast with the
other three calculations made for shifting quantities of portable clients. It is obvious from Fig. 3(a) that Yalmip,
when utilized as an improving device, can't create a palatable result.

Table 2: Performance in relation to various mobile user counts. (A) Wellbeing

Number of
mobile users

Welfare
MO-NSGA YALMIP ROGS HOBS

0 50 100 150 200

FCFS

Round Robin

Proposed Method

Energy Consumption (kWh)

Resource Utilization (%)

Average Task Latency (ms)

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14866

23 2.4 4.6 1.3 2.8
32 4.4 6.7 3.4 3.5
43 5.2 4.3 4.5 4.5
55 4.5 3.4 5.6 4.9
63 5.7 2.1 6.6 5.4
44 7.7 2.4 7.5 5.0
78 6.9 4.5 8.5 6.8

Figure 3: Performance in relation to a varied number of mobile users. (a) Wellbeing

The table 2 portrays information on the quantity of mobile clients and their relating government assistance
scores under four different streamlining calculations: MO-NSGA, YALMIP, ROGS, and HOBS. Each column
addresses a particular situation or dataset, with the quantity of mobile clients changing from 23 to 78, and the
government assistance scores shifting across the streamlining calculations. The government assistance scores
mirror the viability or attractiveness of the particular calculations in upgrading the given situations. For
example, at 23 mobile clients, YALMIP yields the most noteworthy government assistance score of 4.6, while
ROGS has the least score of 1.3. Notwithstanding, as the quantity of mobile clients builds, the government
assistance scores vacillate across the various calculations. Quiet, a few calculations might perform better under
specific circumstances or datasets contrasted with others, as confirmed by the shifting government assistance
scores across various situations. These varieties recommend the significance of choosing the fitting
enhancement calculation in light of explicit necessities or targets. Moreover, breaking down the connection
between the quantity of mobile clients and government assistance scores can give bits of knowledge into
calculation execution and help in dynamic cycles, especially in fields, for example, asset distribution, activities
examination, or broadcast communications.

IV. CONCLUSIONS

The findings of this research endeavor indicate that the utilization of deep learning-based predictive task
scheduling was successfully demonstrated to be effective in optimizing dynamic request scheduling in Mobile
Edge Computing (MEC) environments to obtain optimal results. This was accomplished by demonstrating that
the utilization of this scheduling method was successful. Long Short-Term Memory (LSTM) models were
utilized by the system to accomplish the capability of anticipating future job arrivals as well as user movement
patterns. This was accomplished through the utilization of the system. This allowed the system to distribute
resources more proactively and effectively, which ultimately led to higher efficiency. As a result of this, the
system was able to achieve success. It was established that the deep learning-based method was superior to
traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Round Robin. This conclusion
was reached based on the results of simulations that were carried out in CloudSim. A valid platform for
evaluating the effectiveness of the suggested strategy was supplied by these simulations, which were used to
evaluate the performance of the strategy. I would like to bring to your attention the fact that the study is primarily
concerned with applications that ask for low-latency services and real-time processing specifically.

REFERENCES

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7

Number of mobile users

Welfare MO-NSGA Welfare YALMIP

Welfare ROGS Welfare HOBS

 J.seetha, P.Rama, Gnanasaravanan Subramaniam, Archana Ravindra Salve, Nagadevi Bala Nagaram,
Anil V Turukmane, S B G Tilak Babu

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14867

[1.] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, "Convergence of Edge Computing and
Deep Learning: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–
904, 2nd Quart., 2020, doi: 10.1109/COMST.2020.2970550.

[2.] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing: State-of-the-Art and Research Challenges," Journal
of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, May 2010, doi: 10.1007/s13174-010-0007-6.

[3.] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The
Communication Perspective," IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 4th
Quart., 2017, doi: 10.1109/COMST.2017.2745201.

[4.] S. Sardellitti, G. Scutari, and S. Barbarossa, "Joint Optimization of Radio and Computational Resources for
Multicell Mobile-Edge Computing," IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, Jun. 2015, doi: 10.1109/TSIPN.2015.2417755.

[5.] C. You, K. Huang, H. Chae, and B. Kim, "Energy-Efficient Resource Allocation for Mobile-Edge Computation
Offloading," IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, Mar. 2017, doi:
10.1109/TWC.2016.2640305.

[6.] S. Yu, W. Liang, M. Jia, and Z. Li, "Online Task Offloading and Resource Allocation for Edge Computing
With Energy Harvesting Devices," IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 850–862,
Jan. 2019, doi: 10.1109/TVT.2018.2877293.

[7.] X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing," IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016, doi:
10.1109/TNET.2015.2487344.

[8.] Y. Sun, S. Zhou, and J. Xu, "EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra
Dense Networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646, Nov.
2017, doi: 10.1109/JSAC.2017.2727319.

[9.] Q. Fan and N. Ansari, "Towards Workload Balancing in Fog Computing Empowered IoT," IEEE Transactions
on Network Science and Engineering, vol. 7, no. 1, pp. 253–262, Jan.–Mar. 2020, doi:
10.1109/TNSE.2018.2868152.

[10.] W. Zhang, Y. Wen, and X. Li, "Toward Transcoding as a Service: Energy-Efficient Offloading Policy
for Green Mobile Cloud," IEEE Network, vol. 28, no. 6, pp. 67–73, Nov.–Dec. 2014, doi:
10.1109/MNET.2014.6963805.

[11.] S. Wang, Y. Wang, J. Zhang, and L. Wang, "Intelligent Resource Allocation in Mobile Edge Computing
Networks: A Deep Reinforcement Learning Approach," IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2206–2219, Dec. 2020, doi: 10.1109/TNSM.2020.3025750.

[12.] P. Mach and Z. Becvar, "Mobile Edge Computing: A Survey on Architecture and Computation
Offloading," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017, doi:
10.1109/COMST.2017.2682318.

[13.] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, "Computation Rate Maximization in UAV-Enabled Wireless-
Powered Mobile-Edge Computing Systems," IEEE Journal on Selected Areas in Communications, vol. 36, no.
9, pp. 1927–1941, Sept. 2018, doi: 10.1109/JSAC.2018.2864398.

[14.] J. Feng, Z. Liu, C. Wu, and Y. Ji, "AVE: Autonomous Vehicular Edge Computing Framework With
ACO-Based Scheduling," IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10660–10675, Dec.
2017, doi: 10.1109/TVT.2017.2751619.

[15.] L. Zhao, J. Li, W. Zhang, and X. Chu, "Energy-Efficient Task Offloading for Time-Varying Mobile Edge
Computing With Computation Caching," IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp.
1709–1723, Mar. 2020, doi: 10.1109/TWC.2019.2961921.

