Original Article

Available online at www.bpasjournals.com

The Impact Of Medical Robotics On Every day Healthcare: Transforming Clinical Operations In India With Special Reference To Chennai

Ms.Jayapreethi Manoharan ¹ Dr.Asha Sundaram² Dr.S.Thangamayan³

How to cite this article: Jayapreethi Manoharan, Asha Sundaram, S.Thangamayan (2024) The Impact Of Medical Robotics On Everyday Healthcare: Transforming Clinical Operations In India With Special Reference To Chennai. *Library Progress International*, 44(3), 8476-8491.

Abstract

The integration of medical robotics into healthcare systems is revolutionizing clinical operations, particularly in India, with a focus on Chennai. This study examines the transformative effects of medical robotics on everyday healthcare practices, emphasizing enhanced patient care, operational efficiency, and safety. Medical robots, which have evolved significantly since their inception in the 1980s, are now utilized in various capacities, including surgical assistance, rehabilitation, and logistical support within healthcare facilities. The deployment of autonomous mobile robots (AMRs) and surgical robots has streamlined workflows, reduced the physical demands on healthcare workers, and minimized the risk of human error. In Chennai, the adoption of these technologies has the potential to address critical challenges such as staffing shortages and the need for improved patient outcomes. This research highlights how robotics can facilitate minimally invasive procedures, optimize medication dispensing, and enhance monitoring for chronic conditions, thereby allowing healthcare professionals to devote more time to direct patient interaction. The findings underscore the importance of embracing robotic technologies to improve the quality of healthcare services and ensure a safer environment for both patients and providers. As medical robotics continue to advance, their role in healthcare is expected to expand, promising further innovations that will enhance clinical operations across India. This study provides a comprehensive overview of the current landscape of medical robotics in Chennai, offering insights into future developments and their implications for healthcare delivery.

Keywords: Medical Robotics, Healthcare, Clinical Operations, Chennai, Patient Care, Operational Efficiency, Autonomous Mobile Robots, Surgical Assistance.

INTRODUCTION

The rise of medical robotics marks a significant shift in healthcare, moving from traditional manual methods to advanced, precise automated techniques. This transformation is global, with Chennai, India, standing out as a key player. Medical robotics includes a variety of applications, such as surgical robots, rehabilitation robots, telepresence robots, and hospital automation systems. These innovations are enhancing precision, shortening

¹Research Scholar, Saveetha School of Law, Saveetha Institute of Medical and Technical Sciences, Chennai - 77,jayapreethim.ssl@saveetha.com.

² Professor, Saveetha School of Law, Saveetha Institute of Medical and Technical Sciences, Chennai – 77.

³Associate Professor, Saveetha School of Law, Saveetha Institute of Medical and Technical Sciences, Chennai – 77. thangamayans..ssl@saveetha.com.

recovery times, and improving patient outcomes. The journey of medical robotics began with the desire to surpass the limitations of human capabilities in performing complex medical procedures. Starting in the 1980s with robotic-assisted surgeries, the technology has now evolved into sophisticated systems for minimally invasive procedures with remarkable accuracy. In India, the adoption of medical robotics took off in the early 2000s, with Chennai leading the way in integrating these technologies into its healthcare system. The Indian government has significantly promoted medical robotics through various initiatives and policies designed to boost innovation and healthcare delivery. The "Make in India" campaign, launched in 2014, has been instrumental in encouraging the domestic production of medical devices, including robotics. Additionally, programs like the National Health Mission and Ayushman Bharat have provided a solid foundation for incorporating advanced medical technologies into the public healthcare system. These efforts have not only facilitated the adoption of medical robotics but have also spurred research and development in this field. Several factors affect the adoption and success of medical robotics in healthcare, such as the availability of skilled personnel, the cost of robotic systems, and the infrastructure needed to support them. Chennai, known for its strong healthcare system and as a medical tourism hub, addresses these factors through a mix of government support, private investment, and educational programs that train healthcare professionals in robotic technologies. Leading medical institutions and research centers in the city further bolster its ability to effectively integrate and utilize medical robotics. Recent trends in medical robotics in India, and specifically in Chennai, include the growing use of robotic-assisted surgeries for knee replacements, cardiac surgeries, and neurosurgeries. The use of telepresence robots for remote consultations and telemedicine has also surged, especially during the COVID-19 pandemic, which underscored the need for contactless medical care. Additionally, advancements in artificial intelligence and machine learning are enhancing the capabilities of medical robots, allowing them to perform more complex tasks with greater independence. Comparing Chennai's adoption of medical robotics with other cities and countries reveals its distinct advantages. While cities like Bangalore and Hyderabad are also making progress in this area, supported by their vibrant tech industries, Chennai's approach is particularly notable. Internationally, the United States and Germany lead in medical robotics innovation and deployment, thanks to significant investments in research and a well-established healthcare infrastructure. However, Chennai's status as a medical tourism hub and its strategic initiatives in healthcare innovation position it uniquely within India. In this study we shall explore the impact of medical robotics on healthcare in Chennai and illustrate the broader changes happening across India. This field's development, driven by government initiatives, technological progress, and a supportive environment for innovation, is revolutionizing clinical operations and setting new standards for patient care. As medical robotics continues to advance, Chennai's healthcare system is likely to serve as a model for other regions, demonstrating the potential of technology to enhance healthcare and improve health outcomes worldwide.

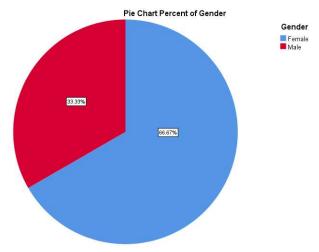
OBJECTIVES

- 1. Examine the Professional Standards Governing Robotic-Assisted Surgery
- 2. Evaluate the Legal Frameworks Addressing Medical Negligence in Robotic-Assisted Surgery
- 3. Analyze Accountability Mechanisms for Medical Practitioners in Robotic-Assisted Surgeries
- 4. Identify Key Factors Contributing to Medical Negligence in Robotic-Assisted Surgeries

REVIEW OF LITERATURE

Anisha Halder Roy(2023) The integration of robotics in the medical field has significantly transformed healthcare, driven by advancements in machine learning. Robotic systems have revolutionized various medical practices, including surgeries, medical imaging, and rehabilitation. These robots offer unparalleled precision and consistency, crucial for complex eye and heart surgeries. Their ability to perform repetitive tasks without fatigue or error enhances operational efficiency and patient outcomes. However, the adoption of medical robotics also presents challenges, including high initial costs and the need for specialized training. Future advancements are expected to further refine these technologies, expanding their applications and accessibility in the healthcare sector.

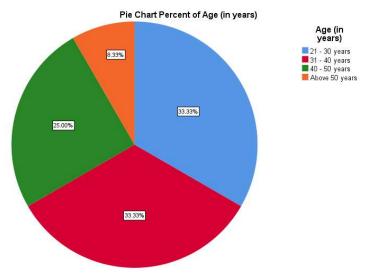
Ikpe AE (2024) Medical robotics has fundamentally transformed healthcare delivery by enhancing precision, efficiency, and safety in medical procedures. Studies have consistently shown that robotic-assisted surgeries lead to reduced invasiveness, fewer complications, and shorter recovery times compared to traditional methods. This has resulted in the widespread adoption of robotic systems across various specialties, including urology, gynecology, and orthopedics. Additionally, medical robotics extends beyond surgery to diagnostic and therapeutic


applications, such as minimally invasive biopsies and drug delivery, as well as rehabilitation and physical therapy. However, the high cost of robotic systems and concerns about potential errors and malfunctions pose significant challenges. Despite these issues, the integration of robotics in healthcare continues to revolutionize patient care, offering promising advancements for the future.

Chukwuka Elendu(2023) The integration of AI and robotics in healthcare introduces transformative advancements in diagnostics, processes, and patient care, yet raises significant ethical concerns. Privacy and data security are paramount, necessitating advanced encryption and anonymization techniques to protect patient information. Addressing algorithmic bias through diverse datasets and continual monitoring is crucial for fairness. Transparency and explainability in AI decision-making foster trust and accountability, while clear responsibility frameworks delineate the roles of manufacturers, institutions, and professionals. Ensuring equitable access and bridging the digital divide are essential to mitigate societal impacts. Global collaboration in developing adaptable regulations and addressing legal challenges is vital for the ethical implementation of these technologies in healthcare.

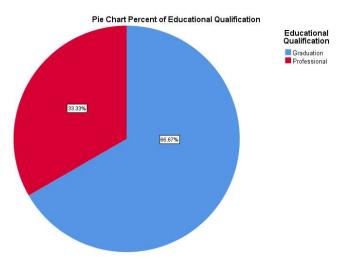
Vivek V(2022) The relevance of robotics in personal healthcare is growing, driven by the need to minimize human contact, ensure hygiene, and support medical staff. Robots are increasingly employed to enhance the quality of care, reduce medical errors, and provide tailored, preventive therapies. As healthcare demands rise due to aging populations and workforce shortages, the development of high-precision robotic treatments becomes crucial.

Stephanie Ness(2022) The integration of AI and robotics in healthcare represents a transformative leap forward, promising substantial improvements in patient care and operational efficiency. This review comprehensively examines the diverse applications of AI robotics, spanning medical diagnosis, surgery, rehabilitation, monitoring, and drug development. It addresses the nuanced challenges of ethical considerations, regulatory frameworks, and societal impacts, crucial for responsible adoption and advancement in healthcare. By synthesizing current research and practical implementations, this review underscores the profound potential of AI robotics to reshape the future of healthcare delivery.


ANALYSIS CHART 1

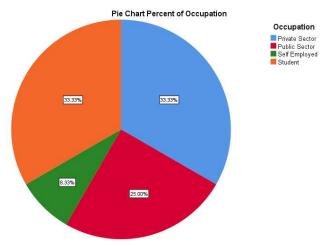
LEGEND

The pie chart shows the respondents according to their gender out of which 66.67% are Male and 33.33% are Female


CHART 2

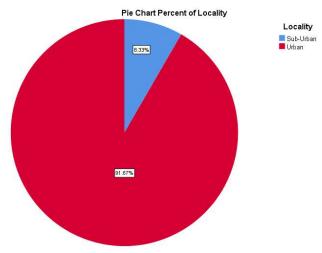
LEGEND

The pie chart shows the respondents according to their Age out of which 33.33% are 21-40 years, 33.33% are 31-40 years, and 25% are 40-50 years, 8.33% are Above 50 years.


CHART 3

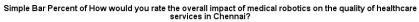
LEGEND

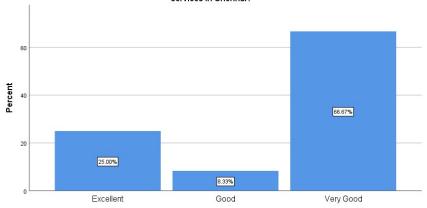
The pie chart shows the respondents according to their Educational Qualification out of which 66.67% are Graduates and 33.33% are of Professional Level.


CHART 4

LEGEND

The pie chart shows the respondents according to their Occupation out of which 33.33% are Students, 25% are from Public Sector, 33.33% are from Private Sector, 8.33% are Self Employed

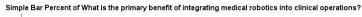

CHART 5

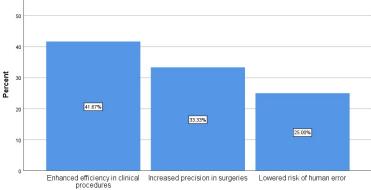


LEGEND

The pie chart shows the respondents according to their Locality out of which 91.67% are Urban and 8.33% are Sub-Urban

FIGURE 1

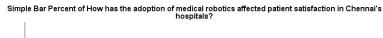


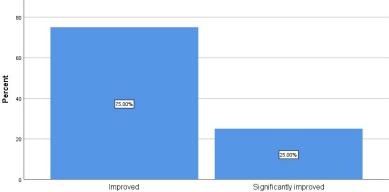

How would you rate the overall impact of medical robotics on the quality of healthcare services in Chennai?

LEGEND

Figure 1 shows How the respondents would rate the overall impact of medical robotics on the quality of healthcare services in Chennai.

FIGURE 2

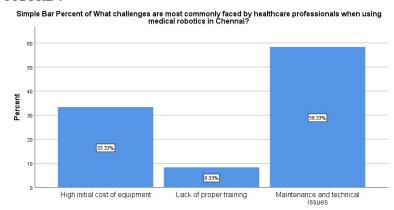



What is the primary benefit of integrating medical robotics into clinical operations?

LEGEND

Figure 2 shows the primary benefit of integrating medical robotics into clinical operations according to the respondents.

FIGURE 3

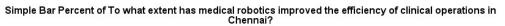


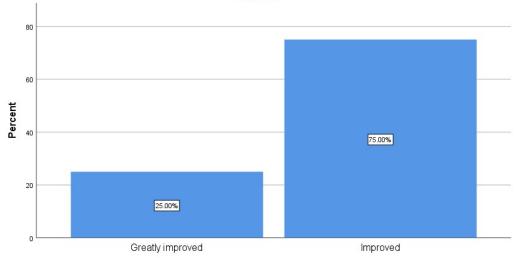
How has the adoption of medical robotics affected patient satisfaction in Chennai's hospitals?

LEGEND

Figure 3 shows how adopting medical robotics has affected patient satisfaction in Chennai's hospitals according to the respondents.

FIGURE 4



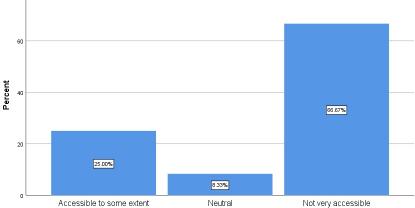

What challenges are most commonly faced by healthcare professionals when using medical robotics in Chennal?

LEGEND

Figure 4 shows What challenges are most commonly faced by healthcare professionals when using medical robotics in Chennai

FIGURE 5

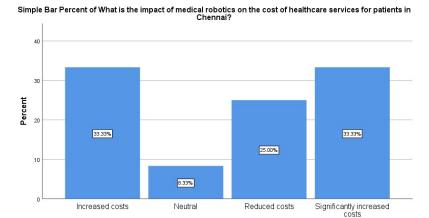




To what extent has medical robotics improved the efficiency of clinical operations in Chennai?

LEGEND

Figure 5 shows to what extent medical robotics has improved the efficiency of clinical operations in Chennai **FIGURE 6**



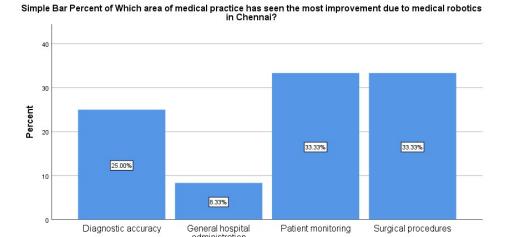
How accessible is robotic-assisted surgery to the general population in Chennai?

LEGEND

Figure 6 shows How accessible is robotic-assisted surgery to the general population in Chennai?

FIGURE 7

What is the impact of medical robotics on the cost of healthcare services for patients in Chennai?

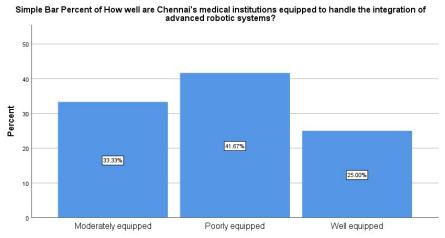

Neutral

LEGEND

Figure 7 shows the impact of medical robotics on the cost of healthcare services for patients in Chennai.

Reduced costs

FIGU\RE 8

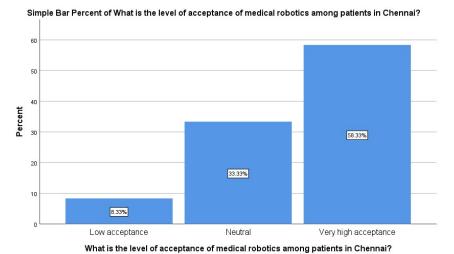


Which area of medical practice has seen the most improvement due to medical robotics in Chennai?

LEGEND

Figure 8 shows which area of medical practice has seen the most improvement due to medical robotics in Chennai

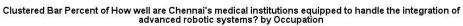
FIGURE 9

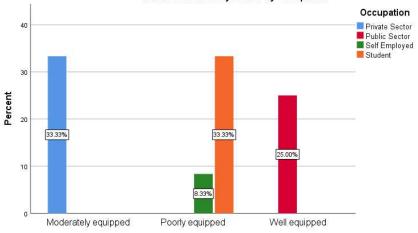


How well are Chennai's medical institutions equipped to handle the integration of advanced robotic systems?

LEGEND

Figure 9 shows How well are Chennai's medical institutions equipped to handle the integration of advanced robotic systems

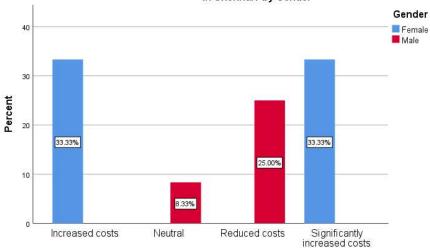

FIGURE 10



LEGEND

Figure 10 shows what is the level of acceptance of medical robotics among patients in Chennai

FIGURE 11

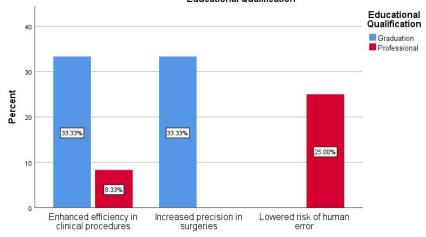

How well are Chennai's medical institutions equipped to handle the integration of advanced robotic systems?

LEGEND

Figure 11 shows How well are Chennai's medical institutions equipped to handle the integration of advanced robotic systems, according to the Occupation of the respondents.\

FIGURE 12

Clustered Bar Percent of What is the impact of medical robotics on the cost of healthcare services for patients in Chennai? by Gender



What is the impact of medical robotics on the cost of healthcare services for patients in Chennai?

LEGEND: Figure 7 shows the impact of medical robotics on the cost of healthcare services for patients in Chennai according to the gender of the respondents.

FIGURE 13

Clustered Bar Percent of What is the primary benefit of integrating medical robotics into clinical operations? by
Educational Qualification

What is the primary benefit of integrating medical robotics into clinical operations?

LEGEND

Figure 13 shows the primary benefit of integrating medical robotics into clinical operations according to the Educational Qualification of respondents.

RESULT ANALYSIS AND DISCUSSION

- 1. Figure 1 illustrates how respondents would rate the overall impact of medical robotics on the quality of healthcare services in Chennai. All respondents rated the impact at a high level of satisfaction, indicating widespread approval of the integration of medical robotics. This consensus reflects a shared belief that the introduction of medical robotics has been a significant boon to the community, elevating the standard of medical care. The technology's ability to enhance precision, efficiency, and safety in healthcare delivery is seen as a transformative development that has positively impacted the quality of care available to the people of Chennai.
- 2. Figure 2 illustrates the primary benefits of integrating medical robotics into clinical operations as perceived by the respondents. A significant majority highlighted enhanced efficiency in clinical procedures as the most prominent advantage. This reflects the growing recognition of how robotics can streamline workflows and reduce the time required for various medical tasks. Additionally, respondents emphasized the increased precision in surgeries, showcasing the technology's ability to perform intricate procedures with a level of accuracy that surpasses human capabilities. Lowered risk of human error was also noted as a key benefit, underscoring the role of robotics in minimizing mistakes that can occur due to fatigue or other human factors. Overall, these responses indicate a strong belief in the potential of medical robotics to revolutionize healthcare by improving outcomes and ensuring safer, more efficient medical practices.
- 3. Figure 3 depicts the impact of adopting medical robotics on patient satisfaction in Chennai's hospitals. The respondents overwhelmingly voted that patient satisfaction has either "improved" or "significantly improved" following the integration of medical robotics. This response highlights the positive reception among patients, who likely appreciate the enhanced precision, reduced recovery times, and overall improved outcomes associated with robotic-assisted procedures. The adoption of this technology appears to have had a meaningful and favorable effect on the patient experience in Chennai's healthcare facilities.
- 4. Figure 4 illustrates the most common challenges faced by healthcare professionals when using medical robotics in Chennai. The majority of respondents pointed to the high initial cost of equipment as a significant hurdle, indicating that the financial barrier to entry is a major concern for many institutions. Additionally, the lack of proper training was highlighted, suggesting that healthcare professionals may not always be fully equipped with the necessary skills to operate advanced robotic systems effectively. Maintenance and technical issues were also frequently mentioned, reflecting ongoing concerns about the

- upkeep and reliability of this sophisticated technology. These challenges underscore the complexities involved in integrating medical robotics into healthcare, despite the clear benefits they offer.
- 5. Figure 5 illustrates the extent to which medical robotics has improved the efficiency of clinical operations in Chennai. The majority of respondents indicated that the efficiency has either "greatly improved" or "improved" due to the adoption of medical robotics. This consensus highlights the significant positive impact that robotics technology has had on streamlining clinical procedures, reducing time, and optimizing overall operational workflows within healthcare facilities. The clear improvements reported by respondents underscore the transformative role that medical robotics is playing in enhancing the efficiency of healthcare delivery in Chennai.
- 6. Figure 6 shows the accessibility of robotic-assisted surgery to the general population in Chennai. The majority of respondents voted "Accessible to some extent," with others choosing "Neutral" and "Not very accessible." This distribution suggests that while robotic-assisted surgery is available, it may not be easily accessible to everyone. Factors such as cost, availability of trained professionals, and the limited number of facilities offering these advanced procedures could be contributing to the perceived barriers, making this cutting-edge technology only partially accessible to the broader population in Chennai.
- 7. Figure 7 depicts the impact of medical robotics on the cost of healthcare services for patients in Chennai. Respondents' votes were distributed across several categories, with a notable number indicating "Increased costs" and "Significantly increased costs," while others selected "Neutral" and "Reduced costs." This varied response suggests that while the introduction of medical robotics has brought significant advancements in healthcare, it has also led to higher costs for some patients. The increased expenses could be attributed to the high initial investment in robotic equipment and the specialized training required to operate them. However, the presence of votes for "Reduced costs" implies that, in some cases, the long-term efficiency and precision offered by robotics might lead to cost savings for patients, though this benefit may not be universally felt.
- 8. Figure 8 highlights which areas of medical practice in Chennai have seen the most improvement due to the adoption of medical robotics. The majority of respondents identified "Surgical procedures" as the area with the greatest enhancement, reflecting the precision and efficiency that robotics brings to complex surgeries. Other areas noted for improvement include "Diagnostic accuracy," where robotics has contributed to more accurate and timely diagnosis, and "General hospital administration," where automation has streamlined various administrative processes. "Rehabilitation and therapy" also saw votes, indicating that robotics has positively impacted patient recovery and therapeutic practices, further broadening the scope of its benefits in healthcare.
- 9. Figure 9 illustrates how well Chennai's medical institutions are equipped to handle the integration of advanced robotic systems. The majority of respondents voted "Moderately equipped," indicating that while some institutions have the necessary infrastructure and resources to incorporate robotic technology, there may still be gaps in full readiness. Additionally, a portion of respondents rated the institutions as "Poorly equipped," suggesting that there are significant challenges and limitations in certain facilities, potentially due to lack of funding, training, or technical support. The overall response points to a need for further development and investment to fully support the widespread adoption of advanced robotic systems in Chennai's healthcare sector.
- 10. Figure 10 shows the level of acceptance of medical robotics among patients in Chennai varies, with responses falling into three categories: "Low acceptance," "Neutral," and "Very high acceptance." This distribution indicates a diverse range of opinions among patients. Some may have reservations or limited familiarity with the technology, leading to lower acceptance, while others might have a neutral stance due to uncertainty or lack of experience. Conversely, those who are well-informed about the benefits of medical robotics and have had positive experiences are likely to express very high acceptance. This varied response highlights the need for ongoing education and outreach to increase patient understanding and comfort with robotic-assisted medical procedures.
- 11. Figure 11 illustrates the varying levels of preparedness among Chennai's medical institutions for integrating advanced robotic systems. The majority of respondents rated institutions as "Moderately equipped," suggesting that while some have the necessary infrastructure and resources, there are still gaps in full readiness. A portion of respondents labeled institutions as "Poorly equipped," pointing to

significant challenges such as lack of funding, training, or technical support. When correlating these responses with occupation, public sector employees rated institutions as "Well equipped," indicating better resources and infrastructure in their sector. In contrast, students and self-employed individuals viewed institutions as "Poorly equipped," reflecting perceptions of significant deficiencies. Private sector workers generally saw institutions as "Moderately equipped," suggesting a mixed but generally adequate level of preparedness. This variability highlights the need for targeted improvements and investments across different sectors to enhance the integration of medical robotics in Chennai's healthcare facilities.

CONCLUSION:

The integration of medical robotics into everyday healthcare, particularly in Chennai, India, represents a transformative shift in clinical operations and patient care. This conclusion synthesizes the findings of the research, highlighting the multifaceted impact of robotics on healthcare delivery, operational efficiency, and patient outcomes. One of the most significant contributions of medical robotics is in surgical procedures. Robotic systems, such as the da Vinci Surgical System, have revolutionized minimally invasive surgeries by providing surgeons with enhanced precision, control, and visualization. This technology not only reduces recovery times and hospital stays but also minimizes the risk of complications, thereby improving overall patient outcomes. In Chennai, hospitals adopting these robotic systems have reported increased surgical success rates and patient satisfaction, reflecting a broader trend observed globally. Medical robots play a crucial role in streamlining clinical workflows, addressing staffing shortages, and reducing the physical burden on healthcare workers. Autonomous mobile robots (AMRs) are increasingly utilized for logistical tasks such as transporting supplies, cleaning, and disinfecting patient areas, which is especially vital in the context of infection control. This automation allows healthcare professionals to focus more on direct patient care, enhancing the quality of interactions and the overall patient experience. In Chennai, the deployment of these robots has led to more efficient use of resources and improved operational efficiency within healthcare facilities.

Robotic technologies are also enhancing patient engagement and care, particularly for those with chronic conditions or mobility issues. Social robots and therapeutic exoskeletons are being used to assist in rehabilitation, providing both physical support and cognitive engagement. These innovations not only aid in recovery but also help maintain patient morale, which is crucial for long-term health outcomes. In Chennai, the implementation of such technologies has been linked to improved adherence to treatment regimens and increased patient motivation.

Despite the numerous benefits, the integration of robotics in healthcare is not without challenges. Issues such as the lack of emotional interaction, social acceptance, and concerns regarding data security must be addressed to ensure the successful adoption of these technologies. Moreover, ongoing research and development are essential to expand the capabilities of medical robots and to explore new applications, such as remote surgeries and telemedicine, which have gained prominence in the wake of the COVID-19 pandemic. The future of medical robotics in Chennai and beyond will likely involve greater collaboration between healthcare providers and technology developers to overcome these barriers and enhance the effectiveness of robotic systems.

In conclusion, the impact of medical robotics on everyday healthcare in Chennai is profound and multifaceted. By enhancing surgical precision, streamlining clinical operations, and improving patient engagement, robotics is transforming the landscape of healthcare delivery. As the technology continues to evolve, it holds the potential to address current challenges and further improve patient outcomes. The ongoing commitment to research, development, and collaboration among stakeholders will be crucial in realizing the full potential of medical robotics in the healthcare sector. This transformation not only signifies a leap in technological advancement but also represents a commitment to providing high-quality, efficient, and compassionate care to patients in Chennai and across India.

REFERENCES

- 1. Anisha Halder Roy(2023) Robotics in Medical Domain: The Future of Surgery, Healthcare and Imaging DOI:10.1007/s11277-023-10747-z Corpus ID: 263688225
- 2. Ikpe AE(2024) Overview of the role of medical robotics in day-to-day healthcare services: A paradigm shift in clinical operations DOI:10.61386/imj.v7i2.422
- 3. Chukwuka Elendu(2023) Ethical implications of AI and robotics in healthcare: A review DOI:10.1097/MD.000000000036671
- 4. Vivek V(2022) Applications of Robotics in Healthcare DOI:10.55041/ijsrem14231

- 5. Stephanie Ness (2022): Influence of AI: Robotics in Healthcare DOI:10.9734/ajrcos/2024/v17i5451 Corpus ID: 268825213 eisberg E, Wallace S, O'Hara, S. Defining and Implementing Value-Based Health Care: A S t r a t e g i c F r a m e w o r k . A c a d . M e d. 2020;95(5):682-685.
- Mosadeghrad AM. Factors Affecting Medical Service Quality. Iranian J. Pub. Health, 2014;43(2):210-220.
- Bodina A, Pavan A, Castaldi S. Resource allocation criteria in a hospital. J. Preventive Med. Hyg. 2017;58(2):E184-E189.
- 8. Yinusa A, Faezipour M, Optimizing Healthcare Delivery: A Model For Staffing, Patient Assignment, and Resource Allocation. Appl. Sys. Innov. 2023;6(5):78.
- Seing I, Ericsson C, Birken SA, Schildmeijer K. Characteristics of Successful Changes In Healthcare Organizations: An Interview Study With Physicians, Registered Nurses and Assistant nurses. BMC Health Serv. Res. 2020;20(147):1-8.
- 10. Morgan AA, Abdi J, Syed MAQ, Kohen GE, Barlow P, Vizcaychipi MP. Robots In Healthcare: a Scoping Review. Current Robot. Report. 2022;3(4):271-280.
- 11. Ashrafian H, Clancy O, Grover V, Darzi A. The Evolution Of Robotic Surgery: Surgical And Anaesthetic Aspects. British J. Anaesthesia, 2017;119(1):i72-i84.
- 12. Chiou H, Chiu L, Chen C, Yen Y, Chang C, Liu W. Comparing robotic surgery with laparoscopy And Laparotomy For Endometrial Cancer management: A cohort Study. Int. J. Surg. 2015;13:17-22.
- 13. Ohneberg C, Stöbich N, Warmbein A, Rathgeber I, Mehler-Klamt AC, Fischer U, et al. Assistive robotic systems in nursing care: scoping review. BMC Nurs. 2023;22(1):72
- 14. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sense Int. 2021;2:100117.
 - Abbas A, Bakhos C,Petrov R, Kaiser L. Financial impact of adapting robotics to a thoracic practice in an academic institution. J.Thoracic Disease. 2020;12(2):89-96.
- 15. World Health Organization. *Global Status Report on No communicable Diseases 2014*. Geneva, Switzerland: World Health Organization; 2014
- 16. World Health Organization. *Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000–2012*. Geneva, Switzerland: World Health Organization; 2014.
- 17. World Health Organization . Global Health Estimates Summary Tables: Projections of Deaths by Cause, Age and Sex by World Bank Income Category and WHO Region. Geneva, Switzerland: World Health Organization; 2013. http://www.who.int/healthinfo/global_burden_disease/GHE_DthWHOReg7_Proj_2015_2030.xls?ua=1 . Accessed March 28, 2016.
- 18. Allotey P, Reidpath DD, Yasin S, et al. . Rethinking health-care systems: a focus on chronicity. *Lancet*. 2011;377(9764):450–451.
- 19. Samb B, Desai N, Nishtar S, et al. . Prevention and management of chronic disease: a litmus test for health-systems strengthening in low-income and middle-income countries. *Lancet*. 2010;376(9754):1785–1797.
- 20. Remais JV, Zeng G, Li G, et al. . Convergence of non-communicable and infectious diseases in low-and middle-income countries. *Int J Epidemiol*. 2013;42 (1):221–227.
- 21. Allotey P, Davey T, Reidpath DD. NCDs in low and middle-income countries—assessing the capacity of health systems to respond to population needs. *BMC Public Health*. 2014;14(suppl 2):S1.
- 22. Ebrahim S, Pearce N, Smeeth L, et al. . Tackling non-communicable diseases in low- and middle-income countries: is the evidence from high-income countries all we need. *PLoS Med.* 2013;10(1):e1001377.
- 23. Reddy KS. India's aspirations for universal health coverage. New Engl J Med. 2015;373(1):1-5.
- 24. Galobardes B , Lynch J, Smith GD. Measuring socioeconomic position in health research. *Br Med Bull*. 2007;81–82:21–37.
- 25. Hosseinpoor AR, Bergen N, Mendis S, et al. . Socioeconomic inequality in the prevalence of no communicable diseases in low- and middle-income countries: results from the World Health Survey. BMC Public Health. 2012;12:474.

- 26. Joshi R , Chow CK, Raju PK, et al. . The Rural Andhra Pradesh Cardiovascular Prevention Study (RAPCAPS): a cluster randomized trial. *J Am Coll Cardiol*. 2012;59 (13):1188–1196.
- 27. Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. *Int J Epidemiol*. 2012; 41(3):579–588.
- 28. Kowal P, Chatterji S, Naidoo N, et al. . Data resource profile: the World Health Organization Study on global aging and adult health (SAGE). *Int J Epidemiol*. 2012;41(6):1639–1649.